Dely Hamza, Joharifar Mahdieh, Durupt Laureline, Ostrovskis Armands, Schatz Richard, Bonazzi Thomas, Maisons Gregory, Gacemi Djamal, Salgals Toms, Zhang Lu, Spolitis Sandis, Sun Yan-Ting, Bobrovs Vjačeslavs, Yu Xianbin, Sagnes Isabelle, Pantzas Konstantinos, Vasanelli Angela, Ozolins Oskars, Pang Xiaodan, Sirtori Carlo
Laboratoire de Physique de l'ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005, Paris, France.
Department of Applied Physics, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden.
Nat Commun. 2024 Sep 13;15(1):8040. doi: 10.1038/s41467-024-52053-7.
The large mid-infrared (MIR) spectral region, ranging from 2.5 µm to 25 µm, has remained under-exploited in the electromagnetic spectrum, primarily due to the absence of viable transceiver technologies. Notably, the 8-14 µm long-wave infrared (LWIR) atmospheric transmission window is particularly suitable for free-space optical (FSO) communication, owing to its combination of low atmospheric propagation loss and relatively high resilience to turbulence and other atmospheric disturbances. Here, we demonstrate a direct modulation and direct detection LWIR FSO communication system at 9.1 µm wavelength based on unipolar quantum optoelectronic devices with a unprecedented net bitrate exceeding 55 Gbit s. A directly modulated distributed feedback quantum cascade laser (DFB-QCL) with high modulation efficiency and improved RF-design was used as a transmitter while two high speed detectors utilizing meta-materials to enhance their responsivity are employed as receivers; a quantum cascade detector (QCD) and a quantum-well infrared photodetector (QWIP). We investigate system tradeoffs and constraints, and indicate pathways forward for this technology beyond 100 Gbit s communication.
从2.5微米到25微米的中红外(MIR)大光谱区域在电磁频谱中一直未得到充分利用,主要原因是缺乏可行的收发器技术。值得注意的是,8 - 14微米的长波红外(LWIR)大气传输窗口特别适合自由空间光(FSO)通信,这是由于其低大气传播损耗以及对湍流和其他大气干扰具有相对较高的抗性。在此,我们展示了一种基于单极量子光电器件的9.1微米波长直接调制和直接检测LWIR FSO通信系统,其净比特率超过55 Gbit/s,达到了前所未有的水平。具有高调制效率和改进射频设计的直接调制分布反馈量子级联激光器(DFB - QCL)用作发射器,而两个利用超材料提高响应度的高速探测器用作接收器;一个量子级联探测器(QCD)和一个量子阱红外光电探测器(QWIP)。我们研究了系统的权衡和限制,并指出了该技术在超过100 Gbit/s通信方面的发展方向。