Suppr超能文献

预测尿路上皮膀胱癌全身治疗反应的当代分子标志物:一项叙述性综述

Contemporary Molecular Markers for Predicting Systemic Treatment Response in Urothelial Bladder Cancer: A Narrative Review.

作者信息

Dimitrov George, Mangaldzhiev Radoslav, Slavov Chavdar, Popov Elenko

机构信息

Department of Medical Oncology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria.

Department of Urology, Medical University of Sofia, University Hospital "Tsaritsa Yoanna", 1527 Sofia, Bulgaria.

出版信息

Cancers (Basel). 2024 Sep 1;16(17):3056. doi: 10.3390/cancers16173056.

Abstract

The search for dependable molecular biomarkers to enhance routine clinical practice is a compelling challenge across all oncology fields. Urothelial bladder carcinoma, known for its significant heterogeneity, presents difficulties in predicting responses to systemic therapies and outcomes post-radical cystectomy. Recent advancements in molecular cancer biology offer promising avenues to understand the disease's biology and identify emerging predictive biomarkers. Stratifying patients based on their recurrence risk post-curative treatment or predicting the efficacy of conventional and targeted therapies could catalyze personalized treatment selection and disease surveillance. Despite progress, reliable molecular biomarkers to forecast responses to systemic agents, in neoadjuvant, adjuvant, or palliative treatment settings, are still lacking, underscoring an urgent unmet need. This review aims to delve into the utilization of current and emerging molecular signatures across various stages of urothelial bladder carcinoma to predict responses to systemic therapy.

摘要

在所有肿瘤学领域,寻找可靠的分子生物标志物以改进常规临床实践都是一项极具挑战性的任务。尿路上皮膀胱癌具有显著的异质性,在预测对全身治疗的反应以及根治性膀胱切除术后的预后方面存在困难。分子癌症生物学的最新进展为理解该疾病的生物学特性和识别新出现的预测性生物标志物提供了有前景的途径。根据患者在根治性治疗后的复发风险进行分层,或者预测传统疗法和靶向疗法的疗效,可促进个性化治疗选择和疾病监测。尽管取得了进展,但在新辅助、辅助或姑息治疗环境中,用于预测对全身治疗药物反应的可靠分子生物标志物仍然缺乏,这凸显了一个迫切未满足的需求。本综述旨在深入探讨尿路上皮膀胱癌各个阶段中当前和新出现的分子特征在预测全身治疗反应方面的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b611/11394076/889fd02be471/cancers-16-03056-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验