文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

复合聚偏氟乙烯/盐纤维的介电性能与振动光谱的相关性

Correlation of Dielectric Properties and Vibrational Spectra of Composite PVDF/Salt Fibers.

作者信息

Dallaev Rashid, Sarkar Ranjini, Selimov Daud, Papež Nikola, Kočková Pavla, Schubert Richard, Častková Klara, Orudzhev Farid, Ramazanov Shikhgasan, Holcman Vladimír

机构信息

Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 616 00 Brno, Czech Republic.

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.

出版信息

Polymers (Basel). 2024 Aug 26;16(17):2412. doi: 10.3390/polym16172412.


DOI:10.3390/polym16172412
PMID:39274045
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11396973/
Abstract

Nitride salts were added to polyvinylidene fluoride fibers and then the fiber mats were prepared by electrospinning. An experimental investigation of the structure was provided by Raman, FTIR, SEM, and XRD. The phase ratio of the polymer was studied both theoretically and experimentally in connection with the addition of the hydrates Mg(NO), Ca(NO), and Zn(NO) salts. The comparison of simulated and experimental data for vibrational spectroscopies is discussed. We provide a comparison of triboelectric, dielectric, and compositional characterization of PVDF fibers doped with three types of nitride hydrates. Doping of PVDF fibers with magnesium nitrate hexahydrate leads to significant improvement of the triboelectric performance.

摘要

将氮化物盐添加到聚偏氟乙烯纤维中,然后通过静电纺丝制备纤维毡。通过拉曼光谱、傅里叶变换红外光谱、扫描电子显微镜和X射线衍射对结构进行了实验研究。结合添加水合物Mg(NO)、Ca(NO)和Zn(NO)盐,从理论和实验两方面研究了聚合物的相比例。讨论了振动光谱模拟数据与实验数据的比较。我们对掺杂三种氮化物水合物的聚偏氟乙烯纤维的摩擦电、介电和成分表征进行了比较。用六水合硝酸镁掺杂聚偏氟乙烯纤维可显著提高其摩擦电性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/f548dca5610a/polymers-16-02412-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/1217e091aef7/polymers-16-02412-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/602a0f5fb8c3/polymers-16-02412-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/f4940ac3eca3/polymers-16-02412-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/a73a93a8d88e/polymers-16-02412-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/10adcedd687c/polymers-16-02412-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/e33a220909a8/polymers-16-02412-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/6b058ef8af99/polymers-16-02412-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/9025040dfc5c/polymers-16-02412-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/eaaaa552bba5/polymers-16-02412-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/018498958aef/polymers-16-02412-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/ba39f28e2617/polymers-16-02412-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/f548dca5610a/polymers-16-02412-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/1217e091aef7/polymers-16-02412-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/602a0f5fb8c3/polymers-16-02412-g002a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/f4940ac3eca3/polymers-16-02412-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/a73a93a8d88e/polymers-16-02412-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/10adcedd687c/polymers-16-02412-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/e33a220909a8/polymers-16-02412-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/6b058ef8af99/polymers-16-02412-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/9025040dfc5c/polymers-16-02412-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/eaaaa552bba5/polymers-16-02412-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/018498958aef/polymers-16-02412-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/ba39f28e2617/polymers-16-02412-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bbd/11396973/f548dca5610a/polymers-16-02412-g012.jpg

相似文献

[1]
Correlation of Dielectric Properties and Vibrational Spectra of Composite PVDF/Salt Fibers.

Polymers (Basel). 2024-8-26

[2]
PVDF Fibers Modification by Nitrate Salts Doping.

Polymers (Basel). 2021-7-24

[3]
Triboelectric Response of Electrospun Stratified PVDF and PA Structures.

Nanomaterials (Basel). 2022-1-22

[4]
Characterization of Piezoelectric Properties of Ag-NPs Doped PVDF Nanocomposite Fibres Membrane Prepared by Near Field Electrospinning.

Comb Chem High Throughput Screen. 2022

[5]
Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers.

Polymers (Basel). 2023-7-30

[6]
Piezoelectricity performance and β-phase analysis of PVDF composite fibers with BaTiO and PZT reinforcement.

Heliyon. 2024-1-20

[7]
Piezoelectric Nanogenerator Based on Electrospinning PVDF/Cellulose Acetate Composite Membranes for Energy Harvesting.

Materials (Basel). 2022-10-10

[8]
Characterization of Polyvinylidene Fluoride (PVDF) Electrospun Fibers Doped by Carbon Flakes.

Polymers (Basel). 2020-11-24

[9]
Piezoelectric Response in Electrospun Poly(vinylidene fluoride) Fibers Containing Fluoro-Doped Graphene Derivatives.

ACS Omega. 2018-5-17

[10]
Triboelectric Nanogenerator-Based Near-Field Electrospinning System for Optimizing PVDF Fibers with High Piezoelectric Performance.

ACS Appl Mater Interfaces. 2023-2-1

本文引用的文献

[1]
PVDF/ZnO piezoelectric nanofibers designed for monitoring of internal micro-pressure.

RSC Adv. 2024-4-12

[2]
Enhancing piezoelectric effect of PVDF electrospun fiber through NiO nanoparticles for wearable applications.

Heliyon. 2024-4-5

[3]
Hydrogen Bond-Induced Activation of Photocatalytic and Piezophotocatalytic Properties in Calcium Nitrate Doped Electrospun PVDF Fibers.

Polymers (Basel). 2023-7-30

[4]
Unveiling the structure of aqueous magnesium nitrate solutions by combining X-ray diffraction and theoretical calculations.

Phys Chem Chem Phys. 2022-9-28

[5]
Triboelectric Response of Electrospun Stratified PVDF and PA Structures.

Nanomaterials (Basel). 2022-1-22

[6]
Simultaneous measurement of two biological signals using a multi-layered polyvinylidene fluoride sensor.

Sci Rep. 2022-1-27

[7]
PVDF Fibers Modification by Nitrate Salts Doping.

Polymers (Basel). 2021-7-24

[8]
Structure-Properties Relationship of Electrospun PVDF Fibers.

Nanomaterials (Basel). 2020-6-23

[9]
Density functional theory based studies on the adsorption of rare-earth ions from hydrated nitrate salt solutions on g-CN monolayer surface.

J Mol Graph Model. 2020-6

[10]
Polyvinylidene fluoride-Hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior.

Acta Biomater. 2019-10-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索