van der Weijden Chris W J, Pitombeira Milena S, Peretti Débora E, Campanholo Kenia R, Kolinger Guilherme D, Rimkus Carolina M, Buchpiguel Carlos Alberto, Dierckx Rudi A J O, Renken Remco J, Meilof Jan F, de Vries Erik F J, de Paula Faria Daniele
Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
J Clin Med. 2024 Sep 4;13(17):5234. doi: 10.3390/jcm13175234.
: Multiple sclerosis (MS) has two main phenotypes: relapse-remitting MS (RRMS) and progressive MS (PMS), distinguished by disability profiles and treatment response. Differentiating them using conventional MRI is challenging. : This study explores the use of scaled subprofile modelling using principal component analysis (SSM/PCA) on MRI data to distinguish between MS phenotypes. : MRI scans were performed on patients with RRMS (n = 30) and patients with PMS (n = 20), using the standard sequences Tw, Tw, Tw-FLAIR, and the myelin-sensitive sequences magnetisation transfer (MT) ratio (MTR), quantitative MT (qMT), inhomogeneous MT ratio (ihMTR), and quantitative inhomogeneous MT (qihMT). : SSM/PCA analysis of qihMT images best differentiated PMS from RRMS, with the highest specificity (87%) and positive predictive value (PPV) (83%), but a lower sensitivity (67%) and negative predictive value (NPV) (72%). Conversely, Tw data analysis showed the highest sensitivity (93%) and NPV (89%), with a lower PPV (67%) and specificity (53%). Phenotype classification agreement between Tw and qihMT was observed in 57% of patients. In the subset with concordant classifications, the sensitivity, specificity, PPV, and NPV were 100%, 88%, 90%, and 100%, respectively. : SSM/PCA on MRI data revealed distinctive patterns for MS phenotypes. Optimal discrimination occurred with qihMT and Tw sequences, with qihMT identifying PMS and Tw identifying RRMS. When qihMT and Tw analyses align, MS phenotype prediction improves.
多发性硬化症(MS)有两种主要表型:复发缓解型多发性硬化症(RRMS)和进展型多发性硬化症(PMS),可通过残疾特征和治疗反应加以区分。使用传统磁共振成像(MRI)对它们进行区分具有挑战性。 本研究探讨了在MRI数据上使用基于主成分分析的缩放子轮廓建模(SSM/PCA)来区分MS表型。 对RRMS患者(n = 30)和PMS患者(n = 20)进行了MRI扫描,使用标准序列T1w、T2w、T2-FLAIR以及髓鞘敏感序列磁化传递(MT)比率(MTR)、定量MT(qMT)、不均匀MT比率(ihMTR)和定量不均匀MT(qihMT)。 qihMT图像的SSM/PCA分析对区分PMS和RRMS效果最佳,具有最高的特异性(87%)和阳性预测值(PPV)(83%),但敏感性(67%)和阴性预测值(NPV)(72%)较低。相反,T2w数据分析显示出最高的敏感性(93%)和NPV(89%),PPV(67%)和特异性(53%)较低。在57%的患者中观察到T2w和qihMT之间的表型分类一致性。在分类一致的亚组中,敏感性、特异性、PPV和NPV分别为100%、88%、90%和100%。 MRI数据上的SSM/PCA揭示了MS表型的独特模式。qihMT和T2w序列实现了最佳区分,qihMT可识别PMS,T2w可识别RRMS。当qihMT和T2w分析结果一致时,MS表型预测得到改善。