Suppr超能文献

早期复发缓解型多发性硬化症的脱髓鞘和神经退行性变的纵向微观结构 MRI 标志物:磁化传递、水扩散和 g 比值。

Longitudinal microstructural MRI markers of demyelination and neurodegeneration in early relapsing-remitting multiple sclerosis: Magnetisation transfer, water diffusion and g-ratio.

机构信息

Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom; Anne Rowling Regenerative Neurology Clinic, Edinburgh, United Kingdom.

Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom.

出版信息

Neuroimage Clin. 2022;36:103228. doi: 10.1016/j.nicl.2022.103228. Epub 2022 Oct 13.

Abstract

INTRODUCTION

Quantitative microstructural MRI, such as myelin-sensitive magnetisation transfer ratio (MTR) or saturation (MTsat), axon-sensitive water diffusion Neurite Orientation Dispersion and Density Imaging (NODDI), and the aggregate g-ratio, may provide more specific markers of white matter integrity than conventional MRI for early patient stratification in relapsing-remitting multiple sclerosis (RRMS). The aim of this study was to determine the sensitivity of such markers to longitudinal pathological change within cerebral white matter lesions (WML) and normal-appearing white matter (NAWM) in recently diagnosed RRMS.

METHODS

Seventy-nine people with recently diagnosed RRMS, from the FutureMS longitudinal cohort, were recruited to an extended MRI protocol at baseline and one year later. Twelve healthy volunteers received the same MRI protocol, repeated within two weeks. Ethics approval and written informed consent were obtained. 3T MRI included magnetisation transfer, and multi-shell diffusion-weighted imaging. NAWM and whole brain were segmented from 3D T1-weighted MPRAGE, and WML from T2-weighted FLAIR. MTR, MTsat, NODDI isotropic (ISOVF) and intracellular (ICVF) volume fractions, and g-ratio (calculated from MTsat and NODDI data) were measured within WML and NAWM. Brain parenchymal fraction (BPF) was also calculated. Longitudinal change in BPF and microstructural metrics was assessed with paired t-tests (α = 0.05) and linear mixed models, adjusted for confounding factors with False Discovery Rate (FDR) correction for multiple comparisons. Longitudinal changes were compared with test-retest Bland-Altman limits of agreement from healthy control white matter. The influence of longitudinal change on g-ratio was explored through post-hoc analysis in silico by computing g-ratio with realistic simulated MTsat and NODDI values.

RESULTS

In NAWM, g-ratio and ICVF increased, and MTsat decreased over one year (adjusted mean difference = 0.007, 0.005, and -0.057 respectively, all FDR-corrected p < 0.05). There was no significant change in MTR, ISOVF, or BPF. In WML, MTsat, NODDI ICVF and ISOVF increased over time (adjusted mean difference = 0.083, 0.024 and 0.016, respectively, all FDR-corrected p < 0.05). Group-level longitudinal changes exceeded test-retest limits of agreement for NODDI ISOVF and ICVF in WML only. In silico analysis showed g-ratio may increase due to a decrease in MTsat or ISOVF, or an increase in ICVF.

DISCUSSION

G-ratio and MTsat changes in NAWM over one year may indicate subtle myelin loss in early RRMS, which were not apparent with BPF or NAWM MTR. Increases in NAWM and WML NODDI ICVF were not anticipated, and raise the possibility of axonal swelling or morphological change. Increases in WML MTsat may reflect myelin repair. Changes in NODDI ISOVF are more likely to reflect alterations in water content. Competing MTsat and ICVF changes may account for the absence of g-ratio change in WML. Longitudinal changes in microstructural measures are significant at a group level, however detection in individual patients in early RRMS is limited by technique reproducibility.

CONCLUSION

MTsat and g-ratio are more sensitive than MTR to early pathological changes in RRMS, but complex dependence of g-ratio on NODDI parameters limit the interpretation of aggregate measures in isolation. Improvements in technique reproducibility and validation of MRI biophysical models across a range of pathological tissue states are needed.

摘要

简介

定量微观结构 MRI,如髓鞘敏感磁化转移率(MTR)或饱和(MTsat)、轴突敏感水扩散神经丝取向分散和密度成像(NODDI)和聚合 g 比,可能比常规 MRI 更能提供白质完整性的特异性标志物,以便对复发缓解型多发性硬化症(RRMS)患者进行早期分层。本研究的目的是确定这些标志物在最近诊断的 RRMS 脑白质病变(WML)和正常表现白质(NAWM)内纵向病理变化的敏感性。

方法

79 名来自未来 MS 纵向队列的新近诊断的 RRMS 患者在基线和一年后接受了扩展 MRI 方案的招募。12 名健康志愿者在两周内重复接受相同的 MRI 方案。获得了伦理批准和书面知情同意。3T MRI 包括磁化转移和多壳扩散加权成像。从 3D T1 加权 MPRAGE 中分割 NAWM 和全脑,从 T2 加权 FLAIR 中分割 WML。在 WML 和 NAWM 内测量 MTR、MTsat、NODDI 各向同性(ISOVF)和细胞内(ICVF)体积分数,以及从 MTsat 和 NODDI 数据计算的 g 比。还计算了脑实质分数(BPF)。使用配对 t 检验(α=0.05)和线性混合模型评估 BPF 和微观结构指标的纵向变化,并使用假发现率(FDR)校正进行混杂因素调整。与健康对照组的测试-重测一致性范围进行比较。通过计算具有现实模拟 MTsat 和 NODDI 值的 g 比,通过事后分析在计算中探索了纵向变化对 g 比的影响。

结果

在 NAWM 中,g 比和 ICVF 增加,而 MTsat 在一年内下降(调整后的平均差异分别为 0.007、0.005 和-0.057,所有 FDR 校正的 p 值均<0.05)。MTR、ISOVF 或 BPF 没有显著变化。在 WML 中,MTsat、NODDI ICVF 和 ISOVF 随时间增加(调整后的平均差异分别为 0.083、0.024 和 0.016,所有 FDR 校正的 p 值均<0.05)。仅在 WML 的 NODDI ISOVF 和 ICVF 中,组水平的纵向变化超过了测试-重测一致性范围。计算分析表明,g 比可能由于 MTsat 或 ISOVF 的降低或 ICVF 的增加而增加。

讨论

NAWM 中 g 比和 MTsat 在一年内的变化可能表明早期 RRMS 中有细微的髓鞘丢失,而 BPF 或 NAWM MTR 则不明显。出乎意料的是,NAWM 和 WML NODDI ICVF 增加了,这增加了轴突肿胀或形态变化的可能性。WML MTsat 的增加可能反映了髓鞘修复。NODDI ISOVF 的变化更可能反映了含水量的变化。相互竞争的 MTsat 和 ICVF 变化可能解释了 WML 中 g 比没有变化。微观结构测量的纵向变化在组水平上是显著的,但是在早期 RRMS 中检测个别患者的变化受到技术再现性的限制。

结论

MTsat 和 g 比比 MTR 更能敏感地反映 RRMS 的早期病理变化,但 g 比对 NODDI 参数的复杂依赖限制了孤立的聚合测量的解释。需要改进技术再现性并在一系列病理组织状态下验证 MRI 生物物理模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef2c/9668599/3e1b7f0b51d0/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验