Suppr超能文献

Effect of Extrusion Ratio on Mechanical Behavior and Microstructure Evolution of 7003 Aluminum Alloy at High-Speed Impact.

作者信息

Xing Rui, Guo Pengcheng

机构信息

Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, China.

College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.

出版信息

Materials (Basel). 2024 Aug 26;17(17):4219. doi: 10.3390/ma17174219.

Abstract

The extrusion ratio (ER) is one of the most important factors affecting the service performance of aluminum profiles. In this study, the influence of ER on the mechanical behavior and microstructure evolution of 7003 aluminum alloy at high-speed impact with strain rates ranging from 700 s to 1100 s was investigated. The studied alloy with an ER of 56 formed coarse grain rings during the heat treatment. The microstructure of the alloys with ERs of 20 and 9 is relatively uniform. The results indicate that under high-speed impact, the mechanical response behavior of the 7003-T6 alloy with different ERs is different. For the alloy with an ER of 56, strain hardening is the main mechanism of plastic deformation. In contrast, a flow stress reduction occurs at middle deformation stage for the ones with ERs of 20 and 9 due to concentrated deformation, which is more significant in the alloy with an ER of 20. Under high-speed impact, the alloy with an ER of 56 undergoes uneven plastic deformation due to the presence of coarse grain rings. The deformation is mainly borne by the region of coarse grains near the edge, and the closer to the center, the smaller the deformation. The deformation of the alloys with ERs of 20 and 9 is relatively uniform, but exhibits localized concentrated deformation in the area near the edge. The significant plastic deformation within deformation band causes a local temperature rise, resulting in a slight decrease in flow stress after the peak. These results can provide reliable data support for the application of 7003 aluminum alloy in the vehicle body crash energy absorption structure.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89df/11396539/b579f2bc749c/materials-17-04219-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验