Li Jingjing, Shen Zhiwei, Tie Liuyang, Long Tianyuan, Zhong Qiyue, Chen Xi, Yin Chongshan, Liufu Liguo, Huang Xianhao, Xiong Bangyun, Li Xibo, Duan Chongxiong, He Chunqing
Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China.
Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114, China.
Molecules. 2024 Aug 31;29(17):4147. doi: 10.3390/molecules29174147.
The microstructure and chemical properties of the corona discharge process could provide an effective method for predicting the performance of high-voltage cable insulation materials. In this work, the depth profile of the microstructure and chemical characteristics of corona discharge-treated PE were extensively investigated using Doppler broadening of position annihilation spectroscopy accompanied with positron annihilation lifetime spectroscopy, attenuated total reflectance Fourier transform infrared spectra, Raman spectra and contact angle measurement. By increasing corona discharge duration, the oxygen-containing polar groups, including hydroxyl, carbonyl and ester groups, strongly contribute to the deterioration of hydrophobicity and the enhancement of hydrophilicity. And the mean free volume size, with a broadening distribution, decreases slightly. The line shape parameter decreases because of the decrease in free volume elements and the appearance of oxygen-containing groups. Also, the thickness of the degradation layer, determined from the parameter with positron injection depth, increases and diffuses into the PE matrix. A linear plot within the degradation layer of different corona treatment duration samples indicates the defect type does not change. The parameter decreases and the parameter increases with an increasing corona duration. Using a slow positron beam, the nondestructive probe can be used to profile the microstructure and chemical environment across the corona discharge damage depth, which is beneficial for investigating the surface and interfacial insulation materials.
电晕放电过程的微观结构和化学性质可为预测高压电缆绝缘材料的性能提供有效方法。在本工作中,利用正电子湮没谱的多普勒展宽结合正电子湮没寿命谱、衰减全反射傅里叶变换红外光谱、拉曼光谱和接触角测量,对电晕放电处理后的聚乙烯的微观结构和化学特性的深度分布进行了广泛研究。通过增加电晕放电持续时间,包括羟基、羰基和酯基在内的含氧极性基团对疏水性的恶化和亲水性的增强有很大贡献。并且平均自由体积尺寸略有减小,分布变宽。由于自由体积元素的减少和含氧基团的出现,线形参数减小。此外,由正电子注入深度的参数确定的降解层厚度增加并扩散到聚乙烯基体中。不同电晕处理持续时间样品的降解层内的线性图表明缺陷类型不变。随着电晕持续时间的增加,参数减小而参数增加。使用慢正电子束,无损探针可用于描绘电晕放电损伤深度范围内的微观结构和化学环境,这有利于研究表面和界面绝缘材料。