Suppr超能文献

用于 IRS 辅助的 SWIPT-MEC 系统的能量最小化

Energy Minimization for IRS-Assisted SWIPT-MEC System.

作者信息

Zhang Shuai, Zhu Yujun, Mei Meng, He Xin, Xu Yong

机构信息

School of Computer and Information, Anhui Normal University, Wuhu 241002, China.

School of Electronic and Information Engineering, Tongji University, Shanghai 200092, China.

出版信息

Sensors (Basel). 2024 Aug 24;24(17):5498. doi: 10.3390/s24175498.

Abstract

With the rapid development of the internet of things (IoT) era, IoT devices may face limitations in battery capacity and computational capability. Simultaneous wireless information and power transfer (SWIPT) and mobile edge computing (MEC) have emerged as promising technologies to address these challenges. Due to wireless channel fading and susceptibility to obstacles, this paper introduces intelligent reflecting surfaces (IRS) to enhance the spectral and energy efficiency of wireless networks. We propose a system model for IRS-assisted uplink offloading computation, downlink offloading computation results, and simultaneous energy transfer. Considering constraints such as IRS phase shifts, latency, energy harvesting, and offloading transmit power, we jointly optimize the CPU frequency of IoT devices, offloading transmit power, local computation workload, power splitting (PS) ratio, and IRS phase shifts. This establishes a multi-variate coupled nonlinear problem aimed at minimizing IoT devices energy consumption. We design an effective alternating optimization (AO) iterative algorithm based on block coordinate descent, and utilize closed-form solutions, Dinkelbach-based Lagrange dual method, and semidefinite relaxation (SDR) method to minimize IoT devices energy consumption. Simulation results demonstrate that the proposed scheme achieves lower energy consumption compared to other resource allocation strategies.

摘要

随着物联网(IoT)时代的快速发展,物联网设备可能在电池容量和计算能力上面临限制。同时无线信息与能量传输(SWIPT)和移动边缘计算(MEC)已成为应对这些挑战的有前景的技术。由于无线信道衰落以及对障碍物的敏感性,本文引入智能反射面(IRS)以提高无线网络的频谱和能量效率。我们提出了一种用于IRS辅助的上行卸载计算、下行卸载计算结果以及同时进行能量传输的系统模型。考虑到诸如IRS相移、延迟、能量收集和卸载发射功率等约束,我们联合优化物联网设备的CPU频率、卸载发射功率、本地计算工作量、功率分配(PS)比率和IRS相移。这建立了一个旨在最小化物联网设备能量消耗的多变量耦合非线性问题。我们基于块坐标下降设计了一种有效的交替优化(AO)迭代算法,并利用闭式解、基于丁克尔巴赫的拉格朗日对偶方法和半定松弛(SDR)方法来最小化物联网设备的能量消耗。仿真结果表明,与其他资源分配策略相比,所提出的方案实现了更低的能量消耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9170/11398175/b24d0343a265/sensors-24-05498-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验