Li Xiheng, Liu Yu
School of Electronic and Information Engineering, Chongqing Three Gorges University, Chongqing 404130, China.
Key Laboratory of Geological Environment Monitoring and Disaster Early Warning in Three Gorges Reservoir Area, Chongqing 404120, China.
Sensors (Basel). 2024 Sep 1;24(17):5699. doi: 10.3390/s24175699.
Atmospheric phase error is the main factor affecting the accuracy of ground-based synthetic aperture radar (GB-SAR). The atmospheric phase screen (APS) may be very complicated, so the atmospheric phase correction (APC) model is very important; in particular, the parameters to be estimated in the model are the key to improving the accuracy of APC. However, the conventional APC method first performs phase unwrapping and then removes the APS based on the least-squares method (LSM), and the general phase unwrapping method is prone to introducing unwrapping error. In particular, the LSM is difficult to apply directly due to the phase wrapping of permanent scatterers (PSs). Therefore, a novel methodology for estimating parameters of the APC model based on the maximum likelihood estimation (MLE) and the Gauss-Newton algorithm is proposed in this paper, which first introduces the MLE method to provide a suitable objective function for the parameter estimation of nonlinear far-end and near-end correction models. Then, based on the Gauss-Newton algorithm, the parameters of the objective function are iteratively estimated with suitable initial values, and the Matthews and Davies algorithm is used to optimize the Gauss-Newton algorithm to improve the accuracy of parameter estimation. Finally, the parameter estimation performance is evaluated based on Monte Carlo simulation experiments. The method proposed in this paper experimentally verifies the feasibility and superiority, which avoids phase unwrapping processing unlike the conventional method.
大气相位误差是影响地基合成孔径雷达(GB - SAR)精度的主要因素。大气相位屏(APS)可能非常复杂,因此大气相位校正(APC)模型非常重要;特别是,模型中待估计的参数是提高APC精度的关键。然而,传统的APC方法首先进行相位解缠,然后基于最小二乘法(LSM)去除APS,而一般的相位解缠方法容易引入解缠误差。特别是,由于永久散射体(PSs)的相位缠绕,LSM难以直接应用。因此,本文提出了一种基于最大似然估计(MLE)和高斯 - 牛顿算法的APC模型参数估计新方法,该方法首先引入MLE方法为非线性远端和近端校正模型的参数估计提供合适的目标函数。然后,基于高斯 - 牛顿算法,使用合适的初始值对目标函数的参数进行迭代估计,并使用马修斯和戴维斯算法对高斯 - 牛顿算法进行优化以提高参数估计的精度。最后,基于蒙特卡罗模拟实验评估参数估计性能。本文提出的方法通过实验验证了其可行性和优越性,与传统方法不同,该方法避免了相位解缠处理。