Suppr超能文献

运用混合人工智能结构方法发现双重活性抗癌化合物。

Discovering Dually Active Anti-cancer Compounds with a Hybrid AI-structure-based Approach.

机构信息

DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy.

Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy.

出版信息

J Chem Inf Model. 2024 Nov 11;64(21):8299-8309. doi: 10.1021/acs.jcim.4c01132. Epub 2024 Sep 14.

Abstract

Cancer's persistent growth often relies on its ability to maintain telomere length and tolerate the accumulation of DNA damage. This study explores a computational approach to identify compounds that can simultaneously target both G-quadruplex (G4) structures and poly(ADP-ribose) polymerase (PARP)1 enzyme, offering a potential multipronged attack on cancer cells. We employed a hybrid virtual screening (VS) protocol, combining the power of machine learning with traditional structure-based methods. PyRMD, our AI-powered tool, was first used to analyze vast chemical libraries and to identify potential PARP1 inhibitors based on known bioactivity data. Subsequently, a structure-based VS approach selected compounds from these identified inhibitors for their G4 stabilization potential. This two-step process yielded 50 promising candidates, which were then experimentally validated for their ability to inhibit PARP1 and stabilize G4 structures. Ultimately, four lead compounds emerged as promising candidates with the desired dual activity and demonstrated antiproliferative effects against specific cancer cell lines. This study highlights the potential of combining Artificial Intelligence and structure-based methods for the discovery of multitarget anticancer compounds, offering a valuable approach for future drug development efforts.

摘要

癌症的持续生长通常依赖于其维持端粒长度和耐受 DNA 损伤积累的能力。本研究探讨了一种计算方法,以鉴定能够同时靶向 G-四链体 (G4) 结构和聚 (ADP-核糖) 聚合酶 1 (PARP1) 酶的化合物,为癌细胞提供一种潜在的多管齐下的攻击方法。我们采用了一种混合虚拟筛选 (VS) 方案,将机器学习的强大功能与传统的基于结构的方法相结合。我们的 AI 工具 PyRMD 首先用于分析庞大的化学库,并根据已知的生物活性数据识别潜在的 PARP1 抑制剂。然后,基于结构的 VS 方法从这些鉴定的抑制剂中选择具有 G4 稳定潜力的化合物。这两步过程产生了 50 种有前途的候选化合物,然后对它们抑制 PARP1 和稳定 G4 结构的能力进行了实验验证。最终,有四种先导化合物作为具有所需双重活性的有前途的候选化合物脱颖而出,并对特定的癌细胞系表现出抗增殖作用。这项研究强调了将人工智能和基于结构的方法相结合用于发现多靶标抗癌化合物的潜力,为未来的药物开发工作提供了一种有价值的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验