Programa de Pós-graduação em Ecologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.
Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Universidad de la República, Maldonado, Uruguay.
Aquat Toxicol. 2024 Nov;276:107089. doi: 10.1016/j.aquatox.2024.107089. Epub 2024 Sep 10.
New evidence regarding the risks that microplastics (MP) ingestion pose to human and wildlife health are being revealed with progress made in ecotoxicological research. However, comprehensive and realistic approaches that evaluate multiple physiological responses simultaneously are still scarce despite their relevance to understand whole-organism effects. To address this information gap, we performed an experiment to assess the effects of MP on freshwater fish physiology from the molecular to the organismal level. Using a model species of global commercial importance (Cyprinus carpio) and MP type (recycling industry fragments), size (range between 125-1000 µm), and two concentrations of environmental relevance (0.75 and 8.25 µg/L). Experimental design included 5 blocks containing 3 treatment levels each one: control, low, and high MP concentration, with 6 fish each aquarium (5 blocks x 3 treatments x 6 fish per aquarium = 90 fish). Our results suggest that, under the experimental conditions applied, MP exposure did not cause adverse effects at the morphological (variation in size of gut), metabolic (variation of standard metabolic rate), or ecological (growth performance) levels. Nonetheless, we observed an increased frequency of micronucleated cells with increasing MP concentration (df = 42, t-value = 3.68, p-value < 0.001), showing the potential genotoxicity of MP, which can clearly harm fish health in long-term. Thus, despite being a highly resistant species, exposure to MP may generate negative effects in juvenile C. carpio at cellular or subcellular levels. Our findings highlight that the manifestation of MP effects may vary over time, emphasizing the need for future studies to consider longer exposure durations in experimental designs.
新的证据表明,微塑料(MP)摄入对人类和野生动物健康构成的风险随着生态毒理学研究的进展而逐渐显现。然而,尽管全面和现实的方法对于理解整体生物效应至关重要,但同时评估多种生理反应的方法仍然很少。为了弥补这一信息差距,我们进行了一项实验,以评估微塑料对淡水鱼类从分子到机体水平的生理学影响。使用一种具有全球商业重要性的模式物种(鲤鱼)和微塑料类型(回收工业碎片)、尺寸(125-1000µm 之间)以及两种环境相关性浓度(0.75 和 8.25µg/L)。实验设计包括 5 个块,每个块包含 3 个处理水平:对照组、低浓度组和高浓度组,每个水族箱有 6 条鱼(5 个块 x 3 个处理 x 6 条鱼/水族箱=90 条鱼)。我们的结果表明,在应用的实验条件下,微塑料暴露在形态学(肠道大小变化)、代谢(标准代谢率变化)或生态(生长性能)水平上没有引起不良反应。然而,我们观察到随着微塑料浓度的增加,有丝分裂细胞微核的频率增加(df=42,t 值=3.68,p 值<0.001),表明微塑料具有潜在的遗传毒性,这显然会对鱼类的长期健康造成危害。因此,尽管鲤鱼是一种高度耐受的物种,但暴露于微塑料可能会在细胞或亚细胞水平对幼年鲤鱼产生负面影响。我们的研究结果强调,微塑料效应的表现可能随时间而变化,这强调了未来研究在实验设计中需要考虑更长的暴露时间。