Wang Ju, Brugnoli Benedetta, Foglietta Federica, Andreana Ilaria, Longo Giovanni, Dinarelli Simone, Girasole Marco, Serpe Loredana, Arpicco Silvia, Francolini Iolanda, Di Meo Chiara, Matricardi Pietro
Departments of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.
Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, 00185, Italy.
Int J Biol Macromol. 2024 Sep 13;280(Pt 1):135553. doi: 10.1016/j.ijbiomac.2024.135553.
In the evolving field of nanomedicine, tailoring the mechanical properties of nanogels to fine-tune their biological performance is a compelling avenue of research. This work investigates an innovative method for modulating the stiffness of hyaluronan-cholesterol (HACH) nanogels, an area that remains challenging. By grafting dopamine (DOPA) onto the HA backbone, characterized through UV, H NMR, and FT-IR analyses, we synthesized a novel polymer that spontaneously forms nanogels in aqueous environments. These HACH-DOPA nanogels are characterized by their small size (~170 nm), negative charge (around -32 mV), high stability, efficient drug encapsulation, and potent antioxidant activities (measured by ABTS test). Leveraging mussel-inspired metal coordination chemistry, the DOPA moieties enable stiffness modulation of the nanogels through catechol-Fe interactions. This modification leads to increased crosslinking and, consequently, nanogels with a significantly increased stiffness, as measured by atomic force microscopy (AFM), with the formation of the HACH-DOPA@Fe complex being pH-dependent and reversible. The cytocompatibility was evaluated via WST-1 cell proliferation assays on HUVEC and HDF cell lines, showing no evident cytotoxicity. Furthermore, the modified nanogels demonstrated enhanced cellular uptake, suggesting their substantial potential for intracellular drug delivery applications, a hypothesis supported by confocal microscopy assays. This work not only provides valuable insight into modulating nanogel stiffness but also advances new nanosystems for promising biomedical applications.
在不断发展的纳米医学领域,调整纳米凝胶的机械性能以微调其生物学性能是一个引人注目的研究方向。这项工作研究了一种调节透明质酸 - 胆固醇(HACH)纳米凝胶硬度的创新方法,这一领域仍然具有挑战性。通过将多巴胺(DOPA)接枝到HA主链上,并通过紫外光谱、核磁共振氢谱和傅里叶变换红外光谱分析进行表征,我们合成了一种新型聚合物,它能在水性环境中自发形成纳米凝胶。这些HACH - DOPA纳米凝胶具有尺寸小(约170纳米)、带负电荷(约 - 32毫伏)、稳定性高、药物包封效率高和具有强大抗氧化活性(通过ABTS测试测量)的特点。利用受贻贝启发的金属配位化学,DOPA部分通过邻苯二酚 - 铁相互作用实现纳米凝胶的硬度调节。这种修饰导致交联增加,因此,通过原子力显微镜(AFM)测量,纳米凝胶的硬度显著增加,HACH - DOPA@Fe复合物的形成依赖于pH值且是可逆的。通过对人脐静脉内皮细胞(HUVEC)和人皮肤成纤维细胞(HDF)细胞系进行WST - 1细胞增殖试验评估细胞相容性,结果显示没有明显的细胞毒性。此外,修饰后的纳米凝胶表现出增强的细胞摄取,表明它们在细胞内药物递送应用方面具有巨大潜力,共聚焦显微镜分析支持了这一假设。这项工作不仅为调节纳米凝胶硬度提供了有价值的见解,还推动了用于有前景的生物医学应用的新型纳米系统的发展。