Suppr超能文献

基于遗憾和效用比较探讨游客对国家公园娱乐改善的偏好和支付意愿。

Exploring tourists' preferences and willingness to pay for national park recreation improvements based on regret and utility comparison.

机构信息

International Business College, Shandong Technology and Business University, Yantai, 264000, China.

School of Management Science and Engineering, Shandong Technology and Business University, Yantai, 264000, China.

出版信息

Sci Rep. 2024 Sep 14;14(1):21524. doi: 10.1038/s41598-024-72494-w.

Abstract

Research on the improvement of national park recreation policies has attracted much attention to discrete choice experiments to obtain tourists' preferences and willingness to pay. However, individual choice behavior is extremely complex, and the single Random Utility Maximization (RUM) model ignores anticipated regret and is insufficient to explain individuals' actual choice behavior. To investigate whether regret influences tourists' choices regarding the improvement of national park recreation attributes, this study introduces the Random Regret Minimization (RRM) model and explores the performance of polynomial logit models and hybrid latent class models in analyzing discrete choice models based on utility and regret. By constructing a hybrid utility-regret model, we examine how tourists trade off between attributes such as vegetation coverage, water clarity, amount of litter, and level of crowding in national park recreation. Results indicate that the RRM model has better goodness-of-fit and predictive ability than the RUM model, indicating that regret is a significant choice paradigm, and the hybrid model better explains respondents' choices. Specifically, 62.5% of tourists' choices are driven by regret, and regret-driven respondents are more inclined to increase vegetation coverage and improve water clarity, while utility-driven respondents are more inclined to reduce litter and crowding. This study not only provides a reference for managers to develop more optimal recreation improvement strategies but also offers theoretical insights for national park recreation improvement policies.

摘要

国家公园游憩政策的改进研究引起了人们对离散选择实验的极大关注,以获取游客的偏好和支付意愿。然而,个体的选择行为极其复杂,单一的随机效用最大化(RUM)模型忽略了预期后悔,不足以解释个体的实际选择行为。为了研究后悔是否会影响游客对国家公园游憩属性改进的选择,本研究引入了随机后悔最小化(RRM)模型,并探讨了基于效用和后悔的多项式对数模型和混合潜在类别模型在分析离散选择模型中的表现。通过构建混合效用-后悔模型,我们考察了游客在国家公园游憩中如何权衡植被覆盖、水清澈度、垃圾量和拥挤程度等属性。结果表明,RRM 模型的拟合优度和预测能力均优于 RUM 模型,表明后悔是一个重要的选择范式,混合模型更好地解释了受访者的选择。具体而言,62.5%的游客选择受后悔驱动,后悔驱动的受访者更倾向于增加植被覆盖和改善水清澈度,而效用驱动的受访者更倾向于减少垃圾和拥挤。本研究不仅为管理者制定更优的游憩改进策略提供了参考,也为国家公园游憩政策的改进提供了理论见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e0d/11401836/e7d3841a8942/41598_2024_72494_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验