Suppr超能文献

可分解分子模板组装的尺寸可调跨膜纳米孔。

Size-tunable transmembrane nanopores assembled from decomposable molecular templates.

机构信息

College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Northwest University, Xi'an, 710127, China; School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.

College of Chemistry & Materials Science, Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, Northwest University, Xi'an, 710127, China.

出版信息

Biosens Bioelectron. 2025 Jan 1;267:116780. doi: 10.1016/j.bios.2024.116780. Epub 2024 Sep 11.

Abstract

Transmembrane nanopores, as key elements in molecular transport and single-molecule sensors, are assembled naturally from multiple monomers in the presence of lipid bilayers. The nanopore size, especially the precise diameter of the inner space, determines its sensing targets and further biological application. In this paper, we introduce a template molecule-aided assembly strategy for constructing size-tunable transmembrane nanopores. Inspired by the barrel-like structure, similar to many transmembrane proteins, cyclodextrin molecules of different sizes are utilized as templates and modulators to assemble the α-helical barreled peptide of polysaccharide transporters (Wza). The functional nanopores assembled by this strategy possess high biological and chemical activity and can be inserted into lipid bilayers, forming stable single channels for single-molecule sensing. After enzyme digestion, the cyclodextrins on protein nanopores can be degraded, and the remaining nontemplate transmembrane protein nanopores can also preserve the integrity of their structure and function. The template molecule-aided assembly strategy employed a simple and convenient method for fully artificially synthesizing transmembrane protein nanopores; the pore size is completely dependent on the size of the template molecule and controllable, ranging from 1.1 to 1.8 nm. Furthermore, by chemically synthesized peptides and modifications, the pore function is easily modulated and does not involve the cumbersome genetic mutations of other biological techniques.

摘要

跨膜纳米孔作为分子运输和单分子传感器的关键元件,是在脂质双层的存在下由多个单体自然组装而成的。纳米孔的大小,特别是内部空间的精确直径,决定了其传感目标和进一步的生物应用。在本文中,我们介绍了一种模板分子辅助组装策略,用于构建可调节尺寸的跨膜纳米孔。受桶状结构的启发,类似于许多跨膜蛋白,我们利用不同大小的环糊精分子作为模板和调节剂来组装多糖转运蛋白(Wza)的α-螺旋桶状肽。通过这种策略组装的功能性纳米孔具有高的生物和化学活性,可以插入脂质双层中,形成用于单分子传感的稳定单通道。在酶消化后,蛋白质纳米孔上的环糊精可以被降解,而剩余的非模板跨膜蛋白纳米孔也可以保持其结构和功能的完整性。所采用的模板分子辅助组装策略为完全人工合成跨膜蛋白纳米孔提供了一种简单方便的方法;孔径完全取决于模板分子的大小且可调节,范围从 1.1 纳米到 1.8 纳米。此外,通过化学合成的肽和修饰,很容易调节孔的功能,而不涉及其他生物技术繁琐的基因突变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验