Suppr超能文献

利用光学卫星数据和深度学习绘制中国海域的石油泄漏图。

Mapping of oil spills in China Seas using optical satellite data and deep learning.

作者信息

Wang Lifeng, Lu Yingcheng, Wang Mingxiu, Zhao Wei, Lv Hang, Song Shuxian, Wang Yuntao, Chen Yanlong, Zhan Wenfeng, Ju Weimin

机构信息

International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China.

International Institute for Earth System Science, Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023, China.

出版信息

J Hazard Mater. 2024 Dec 5;480:135809. doi: 10.1016/j.jhazmat.2024.135809. Epub 2024 Sep 10.

Abstract

Oils spilled into the ocean can form various weathered oils (non-emulsified oil slicks (NEOS), oil emulsions (OE)) which threaten the oceanic and coastal environments and ecosystems. Optical remote sensing has the unique ability to discriminate oil types and quantify oil volumes as their spectral contrasts with oil-free seawater. Here, a deep learning-based model is developed for identification, classification, and quantification of various oil types. Based on the oil-contained datasets collected from 7 satellite sensors from April 2019 to August 2023, the origin, quantity, and spatial distribution of oils spilled from ships and rigs in the China Seas are mapped in detail. We found that oil spill incidents are primarily from ship discharges (85.8 %), while platform leaks lead to more oil emulsions (58.6 % compared to 13.1 % from ships), which illuminates that the drilling oils are the main source of oil spill pollution in China Seas. The spilled oils correlate with major port locations, including offshore Qingdao and Rongcheng, Bohai Bay, the adjacent areas of Beihai, and Hue and Danang in Vietnam. This study provides new insights into the assessment and management of offshore and marine oil spills.

摘要

泄漏到海洋中的油类会形成各种风化油(非乳化油膜(NEOS)、油乳液(OE)),这些风化油会对海洋和沿海环境及生态系统构成威胁。光学遥感具有独特的能力,能够凭借油类与无油海水之间的光谱差异来区分油类并量化油的体积。在此,开发了一种基于深度学习的模型,用于识别、分类和量化各种油类。基于2019年4月至2023年8月期间从7颗卫星传感器收集的含油数据集,详细绘制了中国海域船舶和钻井平台泄漏油的来源、数量及空间分布情况。我们发现,溢油事故主要源于船舶排放(85.8%),而平台泄漏导致更多的油乳液(船舶导致的油乳液占13.1%,而平台泄漏导致的占58.6%),这表明钻井油是中国海域溢油污染的主要来源。泄漏的油类与主要港口位置相关,包括青岛和荣成近海、渤海湾、北海相邻区域以及越南的顺化和岘港。本研究为近海和海洋溢油的评估与管理提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验