College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China.
College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center for Apple Germplasm Innovation and Utilization, Zhengzhou 450046, China.
Plant Sci. 2024 Dec;349:112267. doi: 10.1016/j.plantsci.2024.112267. Epub 2024 Sep 13.
Salinity stress is a significant environmental factor that impacts the growth, development, quality, and yield of crops. The 2OG-Fe (II) oxygenase family of enzyme proteins plays crucial roles in plant growth and stress responses. Previously, we identified and characterized MdCo, which encodes a putative 2OG-Fe (II) oxygenase, a key gene for controlling the columnar growth habit of apples. In this study, we explored the role of MdCo in salt stress tolerance. Expression analysis suggested that MdCo exhibits high expression in roots and is significantly induced by NaCl stress. Ectopic expression of MdCo exhibited enhanced salt stress tolerance in transgenic tomatoes, and these plants were characterized by better growth performance, and higher chlorophyll content, but lower electrolyte leakage and malondialdehyde (MDA), and less hydrogen peroxide (HO) and superoxide radicals (O) under salt stress. Overexpression of MdCo can effectively scavenge reactive oxygen species (ROS) by enhancing the activities of antioxidant enzymes and up-regulating the expression of stress-associated genes under salt stress, thereby enhancing salt tolerance in apple calli. Collectively, these findings provide new insights into the function of MdCo in salt stress tolerance as well as future potential application for apple breeding aimed at improving salt stress tolerance.
盐胁迫是影响作物生长、发育、品质和产量的重要环境因素。2-氧代戊二酸-Fe(II)加氧酶家族的酶蛋白在植物生长和应激反应中发挥着关键作用。先前,我们鉴定并表征了 MdCo,它编码一个假定的 2-氧代戊二酸-Fe(II)加氧酶,是控制苹果柱状生长习性的关键基因。在这项研究中,我们探讨了 MdCo 在耐盐胁迫中的作用。表达分析表明,MdCo 在根中表达水平较高,并且对 NaCl 胁迫显著诱导。MdCo 的异位表达使转基因番茄表现出增强的耐盐胁迫能力,这些植株在盐胁迫下表现出更好的生长表现、更高的叶绿素含量,但更低的电解质渗漏和丙二醛(MDA)含量,以及更少的过氧化氢(HO)和超氧自由基(O)。过表达 MdCo 可以通过增强抗氧化酶的活性和上调与应激相关的基因的表达,有效清除活性氧(ROS),从而增强苹果愈伤组织的耐盐性。总之,这些发现为 MdCo 在耐盐胁迫中的功能提供了新的见解,并为未来旨在提高苹果耐盐性的苹果育种提供了潜在的应用。