Suppr超能文献

具有纵向计数、复发性事件和终末事件的家庭数据的三变量联合建模及其在林奇综合征中的应用。

Trivariate Joint Modeling for Family Data with Longitudinal Counts, Recurrent Events and a Terminal Event with Application to Lynch Syndrome.

机构信息

Department of Statistical and Actuarial Sciences, The University of Western Ontario, London, Canada.

Department of Computer Science, The University of Western Ontario, London, Canada.

出版信息

Stat Med. 2024 Nov 20;43(26):5000-5022. doi: 10.1002/sim.10210. Epub 2024 Sep 15.

Abstract

Trivariate joint modeling for longitudinal count data, recurrent events, and a terminal event for family data has increased interest in medical studies. For example, families with Lynch syndrome (LS) are at high risk of developing colorectal cancer (CRC), where the number of polyps and the frequency of colonoscopy screening visits are highly associated with the risk of CRC among individuals and families. To assess how screening visits influence polyp detection, which in turn influences time to CRC, we propose a clustered trivariate joint model. The proposed model facilitates longitudinal count data that are zero-inflated and over-dispersed and invokes individual-specific and family-specific random effects to account for dependence among individuals and families. We formulate our proposed model as a latent Gaussian model to use the Bayesian estimation approach with the integrated nested Laplace approximation algorithm and evaluate its performance using simulation studies. Our trivariate joint model is applied to a series of 18 families from Newfoundland, with the occurrence of CRC taken as the terminal event, the colonoscopy screening visits as recurrent events, and the number of polyps detected at each visit as zero-inflated count data with overdispersion. We showed that our trivariate model fits better than alternative bivariate models and that the cluster effects should not be ignored when analyzing family data. Finally, the proposed model enables us to quantify heterogeneity across families and individuals in polyp detection and CRC risk, thus helping to identify individuals and families who would benefit from more intensive screening visits.

摘要

对于家族数据的纵向计数数据、复发事件和终端事件,三重联合建模在医学研究中引起了越来越多的关注。例如,具有林奇综合征 (LS) 的家族患结直肠癌 (CRC) 的风险很高,其中息肉的数量和结肠镜检查筛查的频率与个体和家族患 CRC 的风险高度相关。为了评估筛查访问如何影响息肉的检测,进而影响 CRC 的发生时间,我们提出了一种聚类三重联合模型。所提出的模型有利于处理零膨胀和过分散的纵向计数数据,并利用个体特异性和家族特异性随机效应来解释个体和家族之间的依赖性。我们将所提出的模型形式化为一个潜在的高斯模型,以使用带有集成嵌套拉普拉斯逼近算法的贝叶斯估计方法,并使用模拟研究来评估其性能。我们的三重联合模型应用于来自纽芬兰的 18 个家族系列,CRC 的发生作为终端事件,结肠镜检查筛查作为复发事件,每次就诊检测到的息肉数量作为具有过分散的零膨胀计数数据。我们表明,我们的三重模型比替代的二元模型拟合得更好,并且在分析家族数据时不应忽略聚类效应。最后,该模型使我们能够量化在息肉检测和 CRC 风险方面个体和家族之间的异质性,从而有助于识别那些从更密集的筛查访问中受益的个体和家族。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验