Ivander Felix, Lindoy Lachlan P, Lee Joonho
Quantum Science and Engineering, Harvard University, Cambridge, MA, USA.
National Physical Laboratory, Teddington, TW11 0LW, United Kingdom.
Nat Commun. 2024 Sep 15;15(1):8087. doi: 10.1038/s41467-024-52081-3.
The dynamics of quantum systems coupled to baths are typically studied using the Nakajima-Zwanzig memory kernel ( ) or the influence functions (I), particularly when memory effects are present. Despite their significance, formal connections between the two have not been explicitly known. We establish their connections by examining the system propagator for a N-level system linearly coupled to Gaussian baths with various types of system-bath coupling. For a certain class of problems, we devised a non-perturbative, diagrammatic approach to construct from I for (driven) systems interacting with Gaussian baths, bypassing conventional projection-free dynamics inputs. Our work provides a way to interpret approximate path integral methods in terms of approximate memory kernels. Moreover, it offers a Hamiltonian learning procedure to extract the bath spectral density from reduced system trajectories, opening new avenues in quantum sensing and engineering. The insights we provide advance our understanding of non-Markovian dynamics and will serve as a stepping stone for future theoretical and experimental developments in this area.
耦合到热库的量子系统动力学通常使用中岛-兹万齐格记忆核( )或影响函数(I)来研究,特别是当存在记忆效应时。尽管它们很重要,但两者之间的形式联系尚未明确知晓。我们通过研究与具有各种类型系统-热库耦合的高斯热库线性耦合的N能级系统的系统传播子来建立它们之间的联系。对于某一类问题,我们设计了一种非微扰的图解方法,用于从与高斯热库相互作用的(受驱动)系统的I构建 ,绕过传统的无投影动力学输入。我们的工作提供了一种根据近似记忆核来解释近似路径积分方法的途径。此外,它还提供了一种哈密顿学习程序,可从约化系统轨迹中提取热库谱密度,为量子传感和工程开辟了新途径。我们提供的见解推进了我们对非马尔可夫动力学的理解,并将作为该领域未来理论和实验发展的垫脚石。