Suppr超能文献

用于HS化学链元素分解的金属硫化物的高通量计算筛选

High-Throughput Computational Screening of Metal Sulfides for the Chemical Looping Elemental Decomposition of HS.

作者信息

Tolstova Polina, Ahmad Rafia, Sepulveda Adrian Cavazos, Cavallo Luigi

机构信息

Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

Saudi Aramco EXPEC Advanced Research Center, Thuwal, 23955-6900, Saudi Arabia.

出版信息

Small. 2024 Dec;20(49):e2407601. doi: 10.1002/smll.202407601. Epub 2024 Sep 16.

Abstract

Hydrogen sulfide is a significant byproduct of oil and gas production and is typically recovered as elemental sulfur, a low-value commodity. In recent years, there have been efforts to upgrade HS through elemental decomposition to S and H, an essential energy carrier in a sustainable economy. Among the promising approaches is thermocatalytic looping, which involves a sulfide-based redox pair. Unfortunately, the search for sulfides capable of facilitating this conversion is progressing slowly, and primarily focusing on monometallic sulfides. With a few notable exceptions, the field of bimetallic sulfide remains largely unexplored. In this study, a machine learning framework is employed to explore the material space of mono and bimetallic sulfides. The workflow begins by mining sulfides from the Materials Project database, allowing the workflow to be benchmarked using formation enthalpies derived from established density functional theory calculations. Through the machine learning framework, the number of bimetallic sulfide redox pairs considered is expanded from 10 cases in the Materials Project database to 10 cases. This expansion allows for the identification trends that can serve as guidelines for future research and helps prioritize materials for experimental testing.

摘要

硫化氢是石油和天然气生产的一种重要副产品,通常作为元素硫回收,而元素硫是一种低价值商品。近年来,人们一直在努力通过元素分解将硫化氢升级为硫和氢,氢是可持续经济中一种重要的能源载体。在有前景的方法中,有热催化循环法,它涉及一个基于硫化物的氧化还原对。不幸的是,寻找能够促进这种转化的硫化物的进展缓慢,并且主要集中在单金属硫化物上。除了少数几个显著的例外,双金属硫化物领域在很大程度上仍未被探索。在本研究中,采用机器学习框架来探索单金属和双金属硫化物的材料空间。工作流程首先从材料项目数据库中挖掘硫化物,从而可以使用从已建立的密度泛函理论计算得出的生成焓对工作流程进行基准测试。通过机器学习框架,所考虑的双金属硫化物氧化还原对的数量从材料项目数据库中的10个案例扩展到1000个案例。这种扩展使得能够识别可作为未来研究指导方针的趋势,并有助于确定实验测试材料的优先级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验