Zhou Yaqin, Wang Yuanlang, Fu Chunyan, Zhou Ji, Song Yijian, Lin Shangyong, Liang Shuquan, Zhou Shuang, Pan Anqiang
Department of Materials Physics and Chemistry, School of Materials Science & Engineering, Central South University, Changsha, Hunan, 410083, China.
School of Mineral Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
Small. 2024 Nov;20(48):e2405921. doi: 10.1002/smll.202405921. Epub 2024 Sep 16.
Hard carbon (HC) stands out as the most prospective anode for sodium-ion batteries (SIBs) with significant potential for commercial applications. However, some long-standing and intractable obstacles, like low first coulombic efficiency (ICE), poor rate capability, storage capacity, and cycling stability, have severely hindered the conversion process from laboratory to commercialization. The above-mentioned issues are closely related to Na transfer kinetics, surface chemistry, and internal pseudo-graphitic carbon content. Herein, constructing molybdenum-modified hard carbon solid spheres (MoC/HC-5.0), both the ion transfer kinetics, surface chemistry, and internal pseudo-graphitic carbon content are comprehensively improved. Specifically, MoC/HC-5.0 with higher pseudo-graphitic carbon content provides a large number of active sites and a more stable layer structure, resulting in improved sodium storage capacity, rate performance, and cycling stability. Moreover, the lower defect density and specific surface area of MoC/HC-5.0 further enhance ICE and sodium storage capacity. Consequently, the MoC/HC-5.0 anode achieves a high capacity of 410.7 mA h g and an ICE of 83.9% at 50 mA g. Furthermore, the material exhibits exceptional rate capability and cycling stability, maintaining a capacity of 202.8 mA h g at 2 A g and 214.9 mA h g after 800 cycles at 1 A g.
硬碳(HC)作为钠离子电池(SIBs)最具前景的负极脱颖而出,具有巨大的商业应用潜力。然而,一些长期存在且棘手的障碍,如低首次库仑效率(ICE)、较差的倍率性能、存储容量和循环稳定性,严重阻碍了从实验室到商业化的转化进程。上述问题与钠转移动力学、表面化学和内部准石墨碳含量密切相关。在此,通过构建钼修饰的硬碳实心球(MoC/HC-5.0),离子转移动力学、表面化学和内部准石墨碳含量都得到了全面改善。具体而言,具有较高准石墨碳含量的MoC/HC-5.0提供了大量活性位点和更稳定的层状结构,从而提高了钠存储容量、倍率性能和循环稳定性。此外,MoC/HC-5.0较低的缺陷密度和比表面积进一步提高了首次库仑效率和钠存储容量。因此,MoC/HC-5.0负极在50 mA g时实现了410.7 mA h g的高容量和83.9%的首次库仑效率。此外,该材料表现出优异的倍率性能和循环稳定性,在2 A g时保持202.8 mA h g的容量,在1 A g下循环800次后保持214.9 mA h g的容量。