Xiao Shasha, Xiao Ying, He Gang, Zhang Tonghui, Yang Longlong, Huo Feng, Chen Shimou
State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, National Engineering Research Center for Fuel Cell and Hydrogen Source Technology, Beijing University of Chemical Technology Beijing 100029 P. R. China
Longzihu New Energy Laboratory, Henan University Zhengzhou 450046 P. R. China.
Chem Sci. 2025 Aug 27. doi: 10.1039/d5sc04645a.
The lithium-carbon dioxide (Li-CO) battery is a promising energy storage technology that integrates CO utilization with energy storage and conversion. However, its development is hindered by slow reaction kinetics and insulating LiCO discharge products deposited at the cathode, which cause severe polarization and rapid capacity degradation. Herein, novel Cu-based catalysts with multiple active sites anchored on nitrogen-doped carbon (Cu/NC) are developed to achieve highly efficient Li-CO batteries. Metallic Cu nanoparticles facilitate efficient electron transfer during the CO reduction reaction (CORR), while the induced Cu-N/O dual active sites effectively reduce the energy barrier for decomposing discharge products. Furthermore, the optimized N configurations in the NC matrix enhance the intrinsic activity of the catalytic sites. Consequently, the Li-CO battery incorporating the optimized catalyst demonstrates attractive cycling stability over 850 h at 300 mA g, with a remarkably low overpotential of 1.30 V, showing great potential for low-cost and highly efficient Li-CO batteries. This work provides a strategic route for designing cost-effective multi-active-site catalysts, offering critical insights into the development of high-performance Li-CO batteries.
锂-二氧化碳(Li-CO₂)电池是一种很有前景的储能技术,它将二氧化碳的利用与能量存储及转换整合在一起。然而,其发展受到反应动力学缓慢以及阴极沉积的绝缘性Li₂CO₃放电产物的阻碍,这些产物会导致严重的极化和快速的容量衰减。在此,开发了一种新型的具有多个活性位点的锚定在氮掺杂碳上的铜基催化剂(Cu/NC),以实现高效的Li-CO₂电池。金属铜纳米颗粒在二氧化碳还原反应(CORR)过程中促进了有效的电子转移,而诱导产生的Cu-N/O双活性位点有效地降低了分解放电产物的能垒。此外,NC基质中优化的N构型增强了催化位点的固有活性。因此,采用优化催化剂的Li-CO₂电池在300 mA g⁻¹下表现出超过850 h的诱人循环稳定性,过电位低至1.30 V,显示出低成本、高效Li-CO₂电池的巨大潜力。这项工作为设计具有成本效益的多活性位点催化剂提供了一条战略途径,为高性能Li-CO₂电池的发展提供了关键见解。