Liu Qian, Ding Jun
Department of Urology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, China.
Transl Androl Urol. 2024 Aug 31;13(8):1566-1581. doi: 10.21037/tau-24-299. Epub 2024 Aug 26.
Many factors affect the prognosis of kidney renal clear cell carcinoma (KIRC). Early diagnosis can significantly improve the prognosis of KIRC patients. Therefore, a method needs to be developed to diagnose KIRC early, predict patient prognosis, and improve personalized treatments. The objective of this study is to utilize bioinformatics tools and public database resources to identify differentially expressed genes (DEGs) between renal cancer tissues and adjacent normal tissues, and to further screen for prognostic-related genes (PRGs) of KIRC.
KIRC was studied using R language and FunRich software and several databases, including the Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), the University of Alabama at Birmingham cancer data analysis Portal (UALCAN), and Tumor Immune Estimation Resource (TIMER) databases. Moreover, quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the expression of multiple genes in KIRC and adjacent normal tissues.
There were substantial differences in immune cell infiltration between the KIRC and adjacent normal tissues in the GSE40435 and GSE46699 datasets. In addition, we screened multiple PRGs of KIRC by combining the GEO and TCGA data. The UALCAN database verified that some representative PRGs were differently expressed depending on the lymph node metastasis status, grade, and stage of KIRC. The qRT-PCR results confirmed the expression of the PRGs in KIRC and adjacent normal tissues. Through the GO and KEGG analyses, interaction analysis, and TIMER database, we found that the prognosis of KIRC was closely related to immune microenvironment and vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) signaling.
Our findings could contribute to the prognosis prediction of KIRC, the selection of personalized treatments, and the early diagnosis of KIRC.
许多因素影响肾透明细胞癌(KIRC)的预后。早期诊断可显著改善KIRC患者的预后。因此,需要开发一种方法来早期诊断KIRC、预测患者预后并改善个性化治疗。本研究的目的是利用生物信息学工具和公共数据库资源,识别肾癌组织与癌旁正常组织之间的差异表达基因(DEG),并进一步筛选KIRC的预后相关基因(PRG)。
使用R语言和FunRich软件以及多个数据库对KIRC进行研究,这些数据库包括基因表达综合数据库(GEO)、癌症基因组图谱(TCGA)、阿拉巴马大学伯明翰分校癌症数据分析门户(UALCAN)和肿瘤免疫估计资源(TIMER)数据库。此外,采用定量实时聚合酶链反应(qRT-PCR)验证多个基因在KIRC和癌旁正常组织中的表达。
在GSE40435和GSE46699数据集中,KIRC与癌旁正常组织之间的免疫细胞浸润存在显著差异。此外,我们通过整合GEO和TCGA数据筛选出多个KIRC的PRG。UALCAN数据库证实,一些代表性PRG根据KIRC的淋巴结转移状态、分级和分期而有不同表达。qRT-PCR结果证实了PRG在KIRC和癌旁正常组织中的表达。通过基因本体(GO)和京都基因与基因组百科全书(KEGG)分析、相互作用分析以及TIMER数据库,我们发现KIRC的预后与免疫微环境和血管内皮生长因子(VEGF)/血管内皮生长因子受体(VEGFR)信号密切相关。
我们的研究结果有助于KIRC的预后预测、个性化治疗的选择以及KIRC的早期诊断。