Suppr超能文献

预测慢性阻塞性肺疾病急性加重期住院患者高住院费用和延长住院时间的列线图

Nomograms for Predicting High Hospitalization Costs and Prolonged Stay among Hospitalized Patients with pAECOPD.

作者信息

Dilixiati Nafeisa, Lian Mengyu, Hou Ziliang, Song Jie, Yang Jingjing, Lin Ruiyan, Wang Jinxiang

机构信息

Department of Pulmonary and Critical Care Medicine Beijing Luhe Hospital Capital Medical University, Beijing, China.

出版信息

Can Respir J. 2024 Sep 6;2024:2639080. doi: 10.1155/2024/2639080. eCollection 2024.

Abstract

This study aimed to develop nomograms to predict high hospitalization costs and prolonged stays in hospitalized acute exacerbations of chronic obstructive pulmonary disease (AECOPD) patients with community-acquired pneumonia (CAP), also known as pAECOPD. A total of 635 patients with pAECOPD were included in this observational study and divided into training and testing sets. Variables were initially screened using univariate analysis, and then further selected using a backward stepwise regression. Multivariable logistic regression was performed to establish nomograms. The predictive performance of the model was evaluated using the receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve, and decision curve analysis (DCA) in both the training and testing sets. Finally, the logistic regression analysis showed that elevated white blood cell count (WBC>10 × 10 cells/l), hypoalbuminemia, pulmonary encephalopathy, respiratory failure, diabetes, and respiratory intensive care unit (RICU) admissions were risk factors for predicting high hospitalization costs in pAECOPD patients. The AUC value was 0.756 (95% CI: 0.699-0.812) in the training set and 0.792 (95% CI: 0.718-0.867) in the testing set. The calibration plot and DCA curve indicated the model had good predictive performance. Furthermore, decreased total protein, pulmonary encephalopathy, reflux esophagitis, and RICU admissions were risk factors for predicting prolonged stays in pAECOPD patients. The AUC value was 0.629 (95% CI: 0.575-0.682) in the training set and 0.620 (95% CI: 0.539-0.701) in the testing set. The calibration plot and DCA curve indicated the model had good predictive performance. We developed and validated two nomograms for predicting high hospitalization costs and prolonged stay, respectively, among hospitalized patients with pAECOPD. This trial is registered with ChiCTR2000039959.

摘要

本研究旨在开发列线图,以预测合并社区获得性肺炎(CAP)的慢性阻塞性肺疾病急性加重期(AECOPD)患者(也称为pAECOPD)的高额住院费用和延长住院时间。本观察性研究共纳入635例pAECOPD患者,并将其分为训练集和测试集。变量最初采用单因素分析进行筛选,然后使用向后逐步回归进一步选择。进行多变量逻辑回归以建立列线图。使用受试者工作特征(ROC)曲线、曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)在训练集和测试集中评估模型的预测性能。最后,逻辑回归分析表明,白细胞计数升高(WBC>10×10⁹/L)、低蛋白血症、肺性脑病、呼吸衰竭、糖尿病和入住呼吸重症监护病房(RICU)是预测pAECOPD患者高额住院费用的危险因素。训练集的AUC值为0.756(95%CI:0.699 - 0.812),测试集的AUC值为0.792(95%CI:0.718 - 0.867)。校准图和DCA曲线表明该模型具有良好的预测性能。此外,总蛋白降低、肺性脑病、反流性食管炎和入住RICU是预测pAECOPD患者住院时间延长的危险因素。训练集的AUC值为0.629(95%CI:0.575 - 0.682),测试集的AUC值为0.620(95%CI:0.539 - 0.701)。校准图和DCA曲线表明该模型具有良好的预测性能。我们分别开发并验证了两个列线图,用于预测住院pAECOPD患者的高额住院费用和延长住院时间。本试验已在中国临床试验注册中心注册,注册号为ChiCTR2000039959。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f3b/11398965/f5b7e8c7000e/CRJ2024-2639080.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验