Suppr超能文献

一种基于梅林变换的视频隐写术,对下一代网络的深度学习隐写分析具有更高的抗性。

A Mellin transform based video steganography with improved resistance to deep learning steganalysis for next generation networks.

作者信息

R B Sushma, G R Manjula, Belavagi Manjula C

机构信息

JNNCE Shivamogga, Visvesvaraya Technological University, Belagavi, Karnataka 590018, India.

Department of Information and Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.

出版信息

MethodsX. 2024 Aug 14;13:102887. doi: 10.1016/j.mex.2024.102887. eCollection 2024 Dec.

Abstract

In the era of 5 G network advancements, the potential for extremely robust, less-latency, and huge-capacity communication opens up new perspective for multimedia. Steganography enables embedding of sensitive data within multimedia files, making it unreadable to unauthorized third parties. Notably, when using videos as cover, the capacity for data embedding is substantially increased. Recent developments in steganography have largely revolved around modified versions of transform domain techniques. Due to this repetitiveness, it becomes easier for steganalytic tools in detecting concealed data. Addressing this issue, our paper introduces an innovative data embedding approach MARVIS based on the Mellin transform. The superiority of the proposed approach is exhibited using the metrics, MSE, PSNR, and SSIM. MARVIS has achieved PSNR of 50-60 dB and SSIM of 0.9998 for embedding 4 bits of secret data, outperforming other methods that achieve 40 dB for 1 bit. By quadrupling stego capacity, we can embed more secret data per pixel without compromising the integrity of the cover object.•MARVIS utilizes phase modulation for data embedding, offering advantages beyond traditional frequency domain techniques which use frequency domain for data embedding.•The effectiveness of the proposed data embedding approach is validated through Y-Net, a deep learning-based steganalysis tool

摘要

在5G网络进步的时代,极其强大、低延迟和大容量通信的潜力为多媒体开辟了新的前景。隐写术能够将敏感数据嵌入多媒体文件中,使未经授权的第三方无法读取。值得注意的是,当使用视频作为载体时,数据嵌入的容量会大幅增加。隐写术的最新发展主要围绕变换域技术的改进版本。由于这种重复性,隐写分析工具检测隐藏数据变得更加容易。为了解决这个问题,我们的论文引入了一种基于梅林变换的创新数据嵌入方法MARVIS。使用均方误差(MSE)、峰值信噪比(PSNR)和结构相似性指数(SSIM)等指标展示了所提方法的优越性。对于嵌入4位秘密数据,MARVIS实现了50 - 60dB的PSNR和0.9998的SSIM,优于其他方法,其他方法嵌入1位数据时只能达到40dB。通过将隐秘容量提高四倍,我们可以在不损害载体对象完整性的情况下,每个像素嵌入更多的秘密数据。

• MARVIS利用相位调制进行数据嵌入,具有超越传统频域技术(使用频域进行数据嵌入)的优势。

• 所提数据嵌入方法的有效性通过基于深度学习的隐写分析工具Y-Net进行了验证

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4ec/11393593/d70628f8f9e7/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验