Suppr超能文献

孤独感能够被预测吗?中国老年人孤独感风险预测模型的构建:基于中国老年健康影响因素跟踪调查的研究

Can Loneliness be Predicted? Development of a Risk Prediction Model for Loneliness among Elderly Chinese: A Study Based on CLHLS.

作者信息

Lin Youbei, Li Chuang, Li Hongyu, Wang Xiuli

机构信息

The First Affiliated Hospital of Jinzhou Medical University.

Jinzhou Medical University.

出版信息

Res Sq. 2024 Sep 2:rs.3.rs-4773143. doi: 10.21203/rs.3.rs-4773143/v1.

Abstract

BACKGROUND

Loneliness is prevalent among the elderly, worsened by global aging trends. It impacts mental and physiological health. Traditional scales for measuring loneliness may be biased due to cognitive decline and varying definitions. Machine learning advancements offer potential improvements in risk prediction models.

METHODS

Data from the 2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS), involving over 16,000 participants aged ≥65 years, were used. The study examined the relationships between loneliness and factors such as cognitive function, functional limitations, living conditions, environmental influences, age-related health issues, and health behaviors. Using R 4.4.1, seven predictive models were developed: logistic regression, ridge regression, support vector machines, K-nearest neighbors, decision trees, random forests, and multi-layer perceptron. Models were evaluated based on ROC curves, accuracy, precision, recall, F1 scores, and AUC.

RESULTS

Loneliness prevalence among elderly Chinese was 23.4%. Analysis identified 16 predictive factors and evaluated seven models. Logistic regression was the most effective model for predicting loneliness risk due to its economic and operational advantages.

CONCLUSION

The study found a 23.4% prevalence of loneliness among elderly individuals in China. SHAP values indicated that higher MMSE scores correlate with lower loneliness levels. Logistic regression was the superior model for predicting loneliness risk in this population.

摘要

背景

孤独在老年人中普遍存在,全球老龄化趋势使其更加严重。孤独会影响心理和生理健康。由于认知能力下降和定义不同,传统的孤独测量量表可能存在偏差。机器学习的进步为风险预测模型带来了潜在的改进。

方法

使用了来自2018年中国健康与养老追踪调查(CLHLS)的数据,该调查涉及16000多名65岁及以上的参与者。该研究考察了孤独与认知功能、功能受限、生活条件、环境影响、与年龄相关的健康问题以及健康行为等因素之间的关系。使用R 4.4.1开发了七个预测模型:逻辑回归、岭回归、支持向量机、K近邻、决策树、随机森林和多层感知器。基于ROC曲线、准确率、精确率、召回率、F1分数和AUC对模型进行评估。

结果

中国老年人的孤独患病率为23.4%。分析确定了16个预测因素并评估了七个模型。由于其经济和操作优势,逻辑回归是预测孤独风险最有效的模型。

结论

该研究发现中国老年人的孤独患病率为23.4%。SHAP值表明,较高的MMSE分数与较低的孤独水平相关。逻辑回归是预测该人群孤独风险的最佳模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41aa/11398568/504258db9d23/nihpp-rs4773143v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验