Xenofontos Christos, Kohl Matthias, Ruhl Samuel, Almeida João, Beckmann Hannah M, Caudillo-Plath Lucía, Ehrhart Sebastian, Höhler Kristina, Kaniyodical Sebastian Milin, Kong Weimeng, Kunkler Felix, Onnela Antti, Rato Pedro, Russell Douglas M, Simon Mario, Stark Leander, Umo Nsikanabasi Silas, Unfer Gabriela R, Yang Boxing, Yu Wenjuan, Zauner-Wieczorek Marcel, Zgheib Imad, Zheng Zhensen, Curtius Joachim, Donahue Neil M, El Haddad Imad, Flagan Richard C, Gordon Hamish, Harder Hartwig, He Xu-Cheng, Kirkby Jasper, Kulmala Markku, Möhler Ottmar, Pöhlker Mira L, Schobesberger Siegfried, Volkamer Rainer, Wang Mingyi, Borrmann Stephan, Pozzer Andrea, Lelieveld Jos, Christoudias Theodoros
Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, Nicosia, Cyprus.
Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany.
NPJ Clim Atmos Sci. 2024;7(1):215. doi: 10.1038/s41612-024-00758-3. Epub 2024 Sep 12.
During summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. This air mass accumulation is thought to contribute to particle formation and the development of the Asian Tropopause Aerosol Layer (ATAL). Despite the known influence of ammonia and particulate ammonium on air pollution, a comprehensive understanding of the ATAL is lacking. In this modelling study, the influence of ammonia on particle formation is assessed with emphasis on the ATAL. We use the EMAC chemistry-climate model, incorporating new particle formation parameterisations derived from experiments at the CERN CLOUD chamber. Our diurnal cycle analysis confirms that new particle formation mainly occurs during daylight, with a 10-fold enhancement in rate. This increase is prominent in the South Asian monsoon UTLS, where deep convection introduces high ammonia levels from the boundary layer, compared to a baseline scenario without ammonia. Our model simulations reveal that this ammonia-driven particle formation and growth contributes to an increase of up to 80% in cloud condensation nuclei (CCN) concentrations at cloud-forming heights in the South Asian monsoon region. We find that ammonia profoundly influences the aerosol mass and composition in the ATAL through particle growth, as indicated by an order of magnitude increase in nitrate levels linked to ammonia emissions. However, the effect of ammonia-driven new particle formation on aerosol mass in the ATAL is relatively small. Ammonia emissions enhance the regional aerosol optical depth (AOD) for shortwave solar radiation by up to 70%. We conclude that ammonia has a pronounced effect on the ATAL development, composition, the regional AOD, and CCN concentrations.
在夏季,东南亚的氨排放会影响空气污染和云的形成。南亚季风的对流输送将这些污染气团带入对流层上部和下部平流层(UTLS),在反气旋流动条件下它们在那里积聚。这种气团积聚被认为有助于颗粒物的形成以及亚洲对流层顶气溶胶层(ATAL)的发展。尽管已知氨和颗粒态铵对空气污染有影响,但对ATAL仍缺乏全面的了解。在这项模拟研究中,重点评估了氨对颗粒物形成的影响,特别是对ATAL的影响。我们使用了EMAC化学气候模型,并纳入了源自欧洲核子研究组织云室实验的新颗粒物形成参数化方法。我们的昼夜循环分析证实,新颗粒物形成主要发生在白天,速率提高了10倍。与没有氨的基线情景相比,这种增加在南亚季风UTLS中尤为显著,在那里深对流从边界层引入了高浓度的氨。我们的模型模拟表明,这种由氨驱动的颗粒物形成和增长导致南亚季风区云形成高度处的云凝结核(CCN)浓度增加高达80%。我们发现,氨通过颗粒物增长深刻影响了ATAL中的气溶胶质量和成分,与氨排放相关的硝酸盐水平增加了一个数量级就表明了这一点。然而,氨驱动的新颗粒物形成对ATAL中气溶胶质量的影响相对较小。氨排放使短波太阳辐射的区域气溶胶光学厚度(AOD)增加高达70%。我们得出结论,氨对ATAL的发展、成分、区域AOD和CCN浓度有显著影响。