Dhannura Shweta, Shekh Shamasoddin, Dhurjad Pooja, Dolle Ashwini, Kakkat Sreepriya, Vijayasarathy Marimuthu, Sonti Rajesh, Gowd Konkallu Hanumae
Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India.
Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India.
ACS Omega. 2024 Aug 28;9(36):37596-37609. doi: 10.1021/acsomega.4c01028. eCollection 2024 Sep 10.
The evolution of miniature conopeptide Li520 (COWC*, *: C-terminal amidation) to exhibit the disulfide isomerase activity was probed using structure, function, disulfide conformation, and the precursor gene sequence. The peptides Li520, Li504, [O2A]Li520, [W3A]Li520, and Grx506, homologues active-site motif of glutaredoxin, were chemically synthesized and assessed for their disulfide reduction potential, intrinsic folding of disulfides, and disulfide isomerization activity on α-conotoxin ImI. The reduction potential of the disulfide of peptides varies from -189 to -344 mV, which is within the range observed for the redox family of proteins that modulates the folding of protein disulfides. The oxidative folding studies confirm the significance of the tryptophan residue in engaging Li520 in disulfide-exchange reactions and the role of proline hydroxylation in extending the lifetime of Li520 in a reduced free thiol state. Studies of quenching of tryptophan fluorescence by the disulfide in situ folding reaction in conjunction with the optimized structures by density functional theory (DFT) confirm the difference in conformation of disulfides between the native and mutant peptides. Interestingly, the native peptide Li520/Li504 shares a similar disulfide conformation of (-,-)AntiRHHook with the redox family of proteins known to modulate disulfides, particularly in lieu of the tetrapeptide of glutaredoxin, deviating from its disulfide conformation compared to its naive protein. Analysis of the precursor gene sequences of M-superfamily conotoxins revealed the presence of Li520 in different cone snail species with distinct food habits and possible modes of evolution through the diversification of cysteine motifs. The results of the report suggest that the short redox conopeptide Li520 has evolved to facilitate the oxidative folding of conotoxins and may be useful to develop as reagents for the synthesis of therapeutically important cysteine-rich peptides.
利用结构、功能、二硫键构象和前体基因序列,对微型芋螺肽Li520(COWC*,*:C末端酰胺化)展现二硫键异构酶活性的进化过程进行了探究。化学合成了肽Li520、Li504、[O2A]Li520、[W3A]Li520以及谷氧还蛋白同源活性位点基序Grx506,并评估了它们的二硫键还原电位、二硫键的固有折叠以及对α-芋螺毒素ImI的二硫键异构化活性。肽中二硫键的还原电位在-189至-344 mV之间变化,这处于调节蛋白质二硫键折叠的氧化还原蛋白家族所观察到的范围内。氧化折叠研究证实了色氨酸残基在使Li520参与二硫键交换反应中的重要性,以及脯氨酸羟基化在延长Li520处于还原游离硫醇状态时的寿命方面的作用。通过二硫键原位折叠反应中色氨酸荧光猝灭研究,并结合密度泛函理论(DFT)优化结构,证实了天然肽和突变肽中二硫键构象的差异。有趣的是,天然肽Li520/Li504与已知调节二硫键的氧化还原蛋白家族具有相似的(-,-)AntiRHHook二硫键构象,特别是取代了谷氧还蛋白的四肽,与其天然蛋白相比,其二硫键构象发生了偏离。对M-超家族芋螺毒素前体基因序列的分析表明,不同食性的芋螺物种中存在Li520,并且可能通过半胱氨酸基序的多样化而进化。该报告结果表明,短氧化还原芋螺肽Li520已经进化以促进芋螺毒素的氧化折叠,并且可能有助于开发成为合成具有治疗重要性的富含半胱氨酸肽的试剂。