Suppr超能文献

使用贝叶斯加法回归树进行变量选择

Variable Selection Using Bayesian Additive Regression Trees.

作者信息

Luo Chuji, Daniels Michael J

机构信息

Google LLC, Mountain View, California 94043,USA.

Department of Statistics, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Stat Sci. 2024 May;39(2):286-304. doi: 10.1214/23-sts900. Epub 2024 May 5.

Abstract

Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the ability to identify relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We introduce these variations as a way of illustrating limitations and opportunities for improving current approaches and assess these via simulations.

摘要

变量选择是一个重要的统计问题。当候选预测变量是混合类型(例如连续型和二元型)并且以非线性和/或非加性方式影响响应变量时,这个问题会变得更具挑战性。在本文中,我们回顾了用于贝叶斯加法回归树(BART)模型的现有变量选择方法,BART是一种非参数回归模型,它足够灵活,能够捕捉预测变量之间的相互作用以及与响应的非线性关系。本综述的重点是识别相关预测变量的能力。我们还提出了两种可用于基于排列的变量选择方法的变量重要性度量,以及一种针对BART的向后变量选择程序。我们引入这些变体作为说明改进当前方法的局限性和机会的一种方式,并通过模拟对其进行评估。

相似文献

1
Variable Selection Using Bayesian Additive Regression Trees.使用贝叶斯加法回归树进行变量选择
Stat Sci. 2024 May;39(2):286-304. doi: 10.1214/23-sts900. Epub 2024 May 5.
6
Bayesian additive regression trees and the General BART model.贝叶斯加法回归树与通用BART模型。
Stat Med. 2019 Nov 10;38(25):5048-5069. doi: 10.1002/sim.8347. Epub 2019 Aug 28.
9
Operator-induced structural variable selection for identifying materials genes.用于识别材料基因的算子诱导结构变量选择
J Am Stat Assoc. 2024;119(545):81-94. doi: 10.1080/01621459.2023.2294527. Epub 2024 Feb 12.

本文引用的文献

1
Dirichlet-Laplace priors for optimal shrinkage.用于最优收缩的狄利克雷-拉普拉斯先验
J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490. doi: 10.1080/01621459.2014.960967. Epub 2014 Sep 25.
2
Reinforcement Learning Trees.强化学习树
J Am Stat Assoc. 2015;110(512):1770-1784. doi: 10.1080/01621459.2015.1036994. Epub 2015 Apr 16.
4
Bayesian effect estimation accounting for adjustment uncertainty.考虑调整不确定性的贝叶斯效应估计。
Biometrics. 2012 Sep;68(3):661-71. doi: 10.1111/j.1541-0420.2011.01731.x. Epub 2012 Feb 24.
5
Permutation importance: a corrected feature importance measure.排列重要性:一种修正的特征重要性度量。
Bioinformatics. 2010 May 15;26(10):1340-7. doi: 10.1093/bioinformatics/btq134. Epub 2010 Apr 12.
7
An introduction to multivariate adaptive regression splines.多元自适应回归样条简介。
Stat Methods Med Res. 1995 Sep;4(3):197-217. doi: 10.1177/096228029500400303.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验