Suppr超能文献

利用简单控制的振动立方体在沙子中实现强劲的自我推进。

Robust self-propulsion in sand using simply controlled vibrating cubes.

作者信息

Liu Bangyuan, Wang Tianyu, Kerimoglu Deniz, Kojouharov Velin, Hammond Frank L, Goldman Daniel I

机构信息

Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, United States.

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.

出版信息

Front Robot AI. 2024 Aug 30;11:1298676. doi: 10.3389/frobt.2024.1298676. eCollection 2024.

Abstract

Much of the Earth and many surfaces of extraterrestrial bodies are composed of non-cohesive particulate matter. Locomoting on such granular terrain is challenging for common robotic devices, either wheeled or legged. In this work, we discover a robust alternative locomotion mechanism on granular media-generating movement via self-vibration. To demonstrate the effectiveness of this locomotion mechanism, we develop a cube-shaped robot with an embedded vibratory motor and conduct systematic experiments on granular terrains of various particle properties and slopes. We investigate how locomotion changes as a function of vibration frequency/intensity on such granular terrains. Compared to hard surfaces, we find such a vibratory locomotion mechanism enables the robot to move faster, and more stably on granular surfaces, facilitated by the interaction between the body and surrounding grains. We develop a numerical simulation of a vibrating single cube on granular media, enabling us to justify our hypothesis that the cube achieves locomotion through the oscillations excited at a distance from the cube's center of mass. The simplicity in structural design and controls of this robotic system indicates that vibratory locomotion can be a valuable alternative way to produce robust locomotion on granular terrains. We further demonstrate that such cube-shaped robots can be used as modular units for vibratory robots with capabilities of maneuverable forward and turning motions, showing potential practical scenarios for robotic systems.

摘要

地球的大部分区域以及许多外星天体的表面都是由非粘性颗粒物构成的。对于普通的轮式或腿式机器人设备而言,在这种颗粒状地形上移动极具挑战性。在这项研究中,我们发现了一种在颗粒介质上通过自振动产生运动的强大替代运动机制。为了证明这种运动机制的有效性,我们开发了一个嵌入振动电机的立方体机器人,并在具有不同颗粒特性和坡度的颗粒地形上进行了系统实验。我们研究了在这种颗粒地形上运动如何随振动频率/强度而变化。与坚硬表面相比,我们发现这种振动运动机制使机器人能够在颗粒表面上更快、更稳定地移动,这得益于机器人主体与周围颗粒之间的相互作用。我们对颗粒介质上振动的单个立方体进行了数值模拟,从而能够验证我们的假设,即立方体通过在离其质心一定距离处激发的振荡来实现运动。该机器人系统在结构设计和控制方面的简单性表明,振动运动可以成为在颗粒地形上实现强大运动的一种有价值的替代方式。我们进一步证明,这种立方体形状的机器人可以用作振动机器人的模块化单元,具备可操纵的向前和转向运动能力,展示了机器人系统潜在的实际应用场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc01/11393480/747b63d8a305/frobt-11-1298676-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验