Suppr超能文献

加拿大多发性硬化症进展前瞻性队列研究:基线特征

The Canadian Prospective Cohort Study to understand progression in multiple sclerosis: baseline characteristics.

作者信息

Oh Jiwon, Arbour Nathalie, Giuliani Fabrizio, Guenette Melanie, Kolind Shannon, Lynd Larry, Marrie Ruth Ann, Metz Luanne M, Prat Alexandre, Schabas Alice, Smyth Penelope, Tam Roger, Traboulsee Anthony, Yong Voon Wee, Patten Scott B

机构信息

Division of Neurology, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, ON M5B 1W8, Canada.

Department of Neurosciences, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.

出版信息

Ther Adv Neurol Disord. 2024 Sep 12;17:17562864241273045. doi: 10.1177/17562864241273045. eCollection 2024.

Abstract

BACKGROUND

Disease progression is observed across the spectrum of people with multiple sclerosis (MS) and identification of effective treatment strategies to halt progression remains one of the greatest unmet clinical needs.

OBJECTIVES

The Canadian Prospective Cohort Study to Understand Progression in MS (CanProCo) was designed to evaluate a wide range of factors associated with the onset and rate of clinical disease progression in MS and to describe the interplay between these factors.

DESIGN

A prospective cohort study.

METHODS

CanProCo is a national, prospective, observational cohort study that has recruited 944 individuals from 5 large academic MS centers in Canada. Participants include people with radiologically isolated syndrome (RIS), early relapsing-remitting and primary progressive MS (RRMS, PPMS), and healthy controls (HCs). Annually, participants complete self-reported questionnaires, undergo clinical evaluation and, if clinically indicated, magnetic resonance images (MRIs) of the brain and cervical spinal cord; in a subset of participants ( = 399), blood, and research MRIs of the brain and cervical spinal cord are collected. Linkages to health administrative databases are available at three sites.

RESULTS

Overall, 944 participants were recruited (53 HCs, 63 RIS, 751 RRMS, 77 PPMS). RIS and MS participants had a mean age of 39.0 years and 70.5% female. The mean time since diagnosis was 2.7 years. There were differences observed in the Expanded Disability Status Scale score and components of the MS performance test (walking speed test, manual dexterity test, processing speed test, and low-contrast visual acuity) between RIS and MS subtypes. Questionnaires revealed more symptoms of depression and anxiety and impaired physical and mental quality of life in people with RIS/MS versus HCs and differences across RIS/MS subtypes.

CONCLUSION

Physical and mental neurological disability is prevalent even in the earliest stages of MS. Transdisciplinary approaches such as those used in CanProCo are needed to better characterize clinical progression in MS. Additional CanProCo results, including MRI, biological, and pharmaco-economic data will be forthcoming. Going forward, CanProCo's data sharing and collaborative vision will facilitate numerous global collaborations, which will inform the development and implementation of effective interventions for people with MS around the world.

摘要

背景

在多发性硬化症(MS)患者群体中可观察到疾病进展,确定有效的阻止疾病进展的治疗策略仍然是尚未满足的最大临床需求之一。

目的

加拿大多发性硬化症进展前瞻性队列研究(CanProCo)旨在评估与MS临床疾病进展的发生和速率相关的多种因素,并描述这些因素之间的相互作用。

设计

一项前瞻性队列研究。

方法

CanProCo是一项全国性的前瞻性观察性队列研究,从加拿大5个大型学术性MS中心招募了944名个体。参与者包括患有放射学孤立综合征(RIS)、早期复发缓解型和原发进展型MS(RRMS、PPMS)的患者以及健康对照(HC)。参与者每年完成自我报告问卷,接受临床评估,并在临床需要时接受脑部和颈脊髓的磁共振成像(MRI)检查;在一部分参与者(n = 399)中,采集血液以及脑部和颈脊髓的研究性MRI。在三个研究点可与卫生行政数据库建立链接。

结果

总体而言,共招募了944名参与者(53名HC、63名RIS、751名RRMS、77名PPMS)。RIS和MS参与者的平均年龄为39.0岁,女性占70.5%。自诊断以来的平均时间为2.7年。在RIS与MS各亚型之间,扩展残疾状态量表评分以及MS性能测试的各项指标(步行速度测试、手部灵活性测试、处理速度测试和低对比度视力)存在差异。问卷显示,与HC相比,RIS/MS患者有更多抑郁和焦虑症状,身心健康质量受损,且RIS/MS各亚型之间存在差异。

结论

即使在MS的最早阶段,身心神经功能障碍也很普遍。需要采用CanProCo中使用的跨学科方法来更好地描述MS的临床进展。CanProCo的其他结果,包括MRI、生物学和药物经济学数据即将公布。展望未来,CanProCo的数据共享和合作愿景将促进众多全球合作,为全球MS患者有效干预措施的制定和实施提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f61/11402083/5e1aec845e5a/10.1177_17562864241273045-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验