Nakielski Paweł, Kosik-Kozioł Alicja, Rinoldi Chiara, Rybak Daniel, More Namdev, Wechsler Jacob, Lehmann Tomasz P, Głowacki Maciej, Stępak Bogusz, Rzepna Magdalena, Marinelli Martina, Lanzi Massimiliano, Seliktar Dror, Mohyeddinipour Sarah, Sheyn Dmitriy, Pierini Filippo
Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland.
Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
Small. 2025 Apr;21(16):e2404963. doi: 10.1002/smll.202404963. Epub 2024 Sep 16.
Intervertebral disc (IVD) degeneration is a leading cause of lower back pain (LBP). Current treatments primarily address symptoms without halting the degenerative process. Cell transplantation offers a promising approach for early-stage IVD degeneration, but challenges such as cell viability, retention, and harsh host environments limit its efficacy. This study aimed to compare the injectability and biocompatibility of human nucleus pulposus cells (hNPC) attached to two types of microscaffolds designed for minimally invasive delivery to IVD. Microscaffolds are developed from poly(lactic-co-glycolic acid) (PLGA) using electrospinning and femtosecond laser structuration. These microscaffolds are tested for their physical properties, injectability, and biocompatibility. This study evaluates cell adhesion, proliferation, and survival in vitro and ex vivo within a hydrogel-based nucleus pulposus model. The microscaffolds demonstrate enhanced surface architecture, facilitating cell adhesion and proliferation. Laser structuration improved porosity, supporting cell attachment and extracellular matrix deposition. Injectability tests show that microscaffolds can be delivered through small-gauge needles with minimal force, maintaining high cell viability. The findings suggest that laser-structured PLGA microscaffolds are viable for minimally invasive cell delivery. These microscaffolds enhance cell viability and retention, offering potential improvements in the therapeutic efficiency of cell-based treatments for discogenic LBP.
椎间盘(IVD)退变是下腰痛(LBP)的主要原因。目前的治疗主要针对症状,而无法阻止退变过程。细胞移植为早期IVD退变提供了一种有前景的方法,但诸如细胞活力、留存率以及恶劣的宿主环境等挑战限制了其疗效。本研究旨在比较附着于两种为微创递送至IVD而设计的微支架上的人髓核细胞(hNPC)的可注射性和生物相容性。微支架由聚乳酸-乙醇酸共聚物(PLGA)通过静电纺丝和飞秒激光结构化技术制成。对这些微支架的物理性质、可注射性和生物相容性进行了测试。本研究评估了在基于水凝胶的髓核模型中细胞在体外和体内的黏附、增殖及存活情况。微支架展现出增强的表面结构,有利于细胞黏附和增殖。激光结构化改善了孔隙率,支持细胞附着和细胞外基质沉积。可注射性测试表明,微支架能够以最小的力通过细针递送,保持高细胞活力。研究结果表明,激光结构化的PLGA微支架对于微创细胞递送是可行的。这些微支架提高了细胞活力和留存率,为基于细胞的椎间盘源性LBP治疗的治疗效率提供了潜在的改善。