Kamata Keigo, Aihara Takeshi, Wachi Keiju
Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
Chem Commun (Camb). 2024 Oct 8;60(81):11483-11499. doi: 10.1039/d4cc03233k.
The design and development of new high-performance catalysts is one of the most important and challenging issues to achieve sustainable chemical and energy production. This Feature Article describes the synthesis of nanostructured metal oxides and phosphates mainly based on earth-abundant metals and their thermocatalytic application to selective oxidation and acid-base reactions. A simple and versatile methodology for the control of nanostructures based on crystalline complex oxides and phosphates with diverse structures and compositions is proposed as another approach to catalyst design. Herein, two unique and verstile methods for the synthesis of metal oxide and phosphate nanostructures are introduced; an amino acid-aided method for metal oxides and phosphates and a precursor crystallization method for porous manganese oxides. Nanomaterials based on perovskite oxides, manganese oxides, and metal phosphates can function as effective heterogeneous catalysts for selective aerobic oxidation, biomass conversion, direct methane conversion, one-pot synthesis, acid-base reactions, and water electrolysis. Furthermore, the structure-activity relationship is clarified based on experimental and computational approaches, and the influence of oxygen vacancy formation, concerted activation of molecules, and the redox/acid-base properties of the outermost surface are discussed. The proposed methodology for nanostructure control would be useful not only for the design and understanding of the complexity of metal oxide catalysts, but also for the development of innovative catalysts.
新型高性能催化剂的设计与开发是实现可持续化学和能源生产的最重要且最具挑战性的问题之一。这篇专题文章描述了主要基于储量丰富的金属的纳米结构金属氧化物和磷酸盐的合成及其在选择性氧化和酸碱反应中的热催化应用。提出了一种基于具有多样结构和组成的结晶复合氧化物和磷酸盐来控制纳米结构的简单通用方法,作为催化剂设计的另一种途径。本文介绍了两种独特且通用的合成金属氧化物和磷酸盐纳米结构的方法;一种用于金属氧化物和磷酸盐的氨基酸辅助方法以及一种用于多孔锰氧化物的前驱体结晶方法。基于钙钛矿氧化物、锰氧化物和金属磷酸盐的纳米材料可作为选择性好氧氧化、生物质转化、直接甲烷转化、一锅法合成、酸碱反应和水电解的有效多相催化剂。此外,基于实验和计算方法阐明了结构 - 活性关系,并讨论了氧空位形成、分子协同活化以及最外表面的氧化还原/酸碱性质的影响。所提出的纳米结构控制方法不仅对金属氧化物催化剂复杂性的设计和理解有用,而且对创新催化剂的开发也有用。