Suppr超能文献

用于催化氧化反应的界面受限型氧化物纳米结构。

Interface-confined oxide nanostructures for catalytic oxidation reactions.

机构信息

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.

出版信息

Acc Chem Res. 2013 Aug 20;46(8):1692-701. doi: 10.1021/ar300249b. Epub 2013 Mar 4.

Abstract

Heterogeneous catalysts, often consisting of metal nanoparticles supported on high-surface-area oxide solids, are common in industrial chemical reactions. Researchers have increasingly recognized the importance of oxides in heterogeneous catalysts: that they are not just a support to help the dispersion of supported metal nanoparticles, but rather interact with supported metal nanoparticles and affect the catalysis. The critical role of oxides in catalytic reactions can become very prominent when oxides cover metal surfaces forming the inverse catalysts. The source of the catalytic activity in homogeneous catalysts and metalloenzymes is often coordinatively unsaturated (CUS) transition metal (TM) cations, which can undergo facile electron transfer and promote catalytic reactions. Organic ligands and proteins confine these CUS cations, making them highly active and stable. In heterogeneous catalysis, however, confining these highly active CUS centers on an inorganic solid so that they are robust enough to endure the reaction environment while staying flexible enough to perform their catalysis remains a challenge. In this Account, we describe a strategy to confine the active CUS centers on the solid surface at the interface between a TM oxide (TMO) and a noble metal (NM). Among metals, NMs have high electron negativity and low oxygen affinity. This means that TM cations of the oxide bind strongly to NM atoms at the interface, forming oxygen-terminated-bilayer TMO nanostructures. The resulting CUS sites at the edges of the TMO nanostructure are highly active for catalytic oxidation reactions. Meanwhile, the strong interactions between TMOs and NMs prevent further oxidation of the bilayer TMO phases, which would otherwise result in the saturation of oxygen coordination and the deactivation of the CUS cations. We report that we can also tune the oxide-metal interactions to modulate the bonding of reactants with CUS centers, optimizing their catalytic performance. We review our recent progress on oxide-on-metal inverse catalysts, mainly the TMO-on-Pt (TM = Fe, Co, and Ni) systems and discuss the interface-confinement effect, an important factor in the behavior of these catalytic systems. We have studied both model catalyst systems and real supported nanocatalysts. Surface science studies and density functional theory calculations in model systems illustrate the importance of the oxide-metal interfaces in the creation and stabilization of surface active centers, and reveal the reaction mechanism at these active sites. In real catalysts, we describe facile preparation processes for fabricating the oxide-on-metal nanostructures. We have demonstrated excellent performance of the inverse catalysts in oxidation reactions such as CO oxidation. We believe that the interface confinement effect can be employed to design highly efficient novel catalysts and that the inverse oxide-on-metal catalysts may find wide applications in heterogeneous catalysis.

摘要

多相催化剂通常由负载在高比表面积氧化物固体上的金属纳米粒子组成,在工业化学反应中很常见。研究人员越来越认识到氧化物在多相催化剂中的重要性:它们不仅是帮助分散负载金属纳米粒子的载体,而且还与负载金属纳米粒子相互作用并影响催化作用。当氧化物覆盖金属表面形成反催化剂时,氧化物在催化反应中的关键作用变得非常突出。均相催化剂和金属酶中催化活性的来源通常是配位不饱和(CUS)过渡金属(TM)阳离子,它们可以进行容易的电子转移并促进催化反应。有机配体和蛋白质将这些 CUS 阳离子限制在其中,使它们具有高活性和稳定性。然而,在多相催化中,将这些高活性 CUS 中心限制在无机固体上,使其足够坚固以承受反应环境,同时保持足够的灵活性以进行催化,仍然是一个挑战。在本综述中,我们描述了一种在 TM 氧化物(TMO)和贵金属(NM)之间的界面上将活性 CUS 中心限制在固体表面上的策略。在金属中,NM 的电子负电性高,氧亲和力低。这意味着氧化物的 TM 阳离子与界面处的 NM 原子强烈结合,形成氧终止双层 TMO 纳米结构。TMO 纳米结构边缘的由此产生的 CUS 位点对催化氧化反应非常活跃。同时,TMO 与 NM 之间的强相互作用阻止了双层 TMO 相的进一步氧化,否则会导致氧配位饱和和 CUS 阳离子失活。我们报告说,我们还可以调节氧化物-金属相互作用来调节反应物与 CUS 中心的键合,从而优化其催化性能。我们综述了我们在氧化物上金属反催化剂方面的最新进展,主要是 TMO-on-Pt(TM = Fe、Co 和 Ni)系统,并讨论了界面限制效应,这是这些催化系统行为中的一个重要因素。我们研究了模型催化剂系统和实际负载纳米催化剂。在模型系统中的表面科学研究和密度泛函理论计算说明了氧化物-金属界面在表面活性中心的形成和稳定中的重要性,并揭示了这些活性位点的反应机制。在实际催化剂中,我们描述了制造氧化物上金属纳米结构的简便制备过程。我们已经证明了反催化剂在 CO 氧化等氧化反应中的优异性能。我们相信,界面限制效应可用于设计高效的新型催化剂,并且氧化物上金属的反催化剂可能在多相催化中得到广泛应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验