Charpentier Thibault
Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette cedex, France.
Faraday Discuss. 2025 Jan 8;255(0):370-390. doi: 10.1039/d4fd00129j.
Solid-state NMR has established itself as a cutting-edge spectroscopy for elucidating the structure of oxide glasses thanks to several decades of methodological and instrumental progress. First-principles calculations of NMR properties combined with molecular-dynamics (MD) simulations provides a powerful complementary approach for the interpretation of NMR data, although they still suffer from limitations in terms of size, time and high consumption of computational resources. We address this challenge by developing a machine-learning framework to boost predictive modelling of NMR spectra. We use kernel ridge regression techniques (least-squares support vector regression and linear ridge regression) combined with smooth overlap of atomic position (SOAP) atom-centered descriptors to efficiently predict NMR interactions: the isotropic magnetic shielding and the electric field gradient (EFG) tensor. As illustrated in this work, this approach enables the simulation of magic-angle spinning (MAS) and multiple-quantum magic-angle spinning (MQMAS) NMR spectra of very large models (more than 10 000 atoms) and an efficient averaging of NMR properties over MD trajectories of nanoseconds for incorporating finite-temperature effects, at the computational cost of classical MD simulations. We illustrate these advances for sodium silicate glasses (SiO-NaO). NMR parameters (isotropic chemical shift and electric field gradient) could be predicted with an accuracy of 1 to 2% in terms of the total span of the NMR parameter values. To include vibrational effects, an approach is proposed of scaling the EFG tensor in NMR simulations with a factor obtained from the time auto-correlation functions computed on MD trajectories.
由于几十年来在方法和仪器方面的进展,固态核磁共振已成为一种用于阐明氧化物玻璃结构的前沿光谱技术。核磁共振性质的第一性原理计算与分子动力学(MD)模拟相结合,为核磁共振数据的解释提供了一种强大的互补方法,尽管它们在尺寸、时间和计算资源消耗方面仍存在局限性。我们通过开发一个机器学习框架来推动核磁共振谱的预测建模,以应对这一挑战。我们使用核岭回归技术(最小二乘支持向量回归和线性岭回归)结合以原子位置平滑重叠(SOAP)为中心的原子描述符,有效地预测核磁共振相互作用:各向同性磁屏蔽和电场梯度(EFG)张量。如本文所示,这种方法能够模拟非常大的模型(超过10000个原子)的魔角旋转(MAS)和多量子魔角旋转(MQMAS)核磁共振谱,并能在纳秒级的MD轨迹上对核磁共振性质进行有效平均,以纳入有限温度效应,其计算成本与经典MD模拟相当。我们以硅酸钠玻璃(SiO-NaO)为例说明了这些进展。就核磁共振参数值的总范围而言,核磁共振参数(各向同性化学位移和电场梯度)的预测精度可达1%至2%。为了纳入振动效应,我们提出了一种在核磁共振模拟中用从MD轨迹上计算的时间自相关函数得到的因子对EFG张量进行缩放的方法。