New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
J Am Chem Soc. 2024 Sep 25;146(38):26187-26197. doi: 10.1021/jacs.4c07718. Epub 2024 Sep 16.
Glycyl radical enzymes (GREs) catalyze mechanistically diverse radical-mediated reactions, playing important roles in the metabolism of anaerobic bacteria. The model bacterium MG1655 contains two GREs of unknown function, YbiW and PflD, which are widespread among human intestinal bacteria. Here, we report that YbiW and PflD catalyze ring-opening C-O cleavage of 1,5-anhydroglucitol-6-phosphate (AG6P) and 1,5-anhydromannitol-6-phosphate (AM6P), respectively. The product of both enzymes, 1-deoxy-fructose-6-phosphate (DF6P), is then cleaved by the aldolases FsaA or FsaB to form glyceraldehyde-3-phosphate (G3P) and hydroxyacetone (HA), which are then reduced by the NADH-dependent dehydrogenase GldA to form 1,2-propanediol (1,2-PDO). Crystal structures of YbiW and PflD in complex with their substrates provided insights into the mechanism of radical-mediated C-O cleavage. This "anhydroglycolysis" pathway enables anaerobic growth of on 1,5-anhydroglucitol (AG) and 1,5-anhydromannitol (AM), and we probe the feasibility of harnessing this pathway for the production of 1,2-PDO, a highly demanded chiral chemical feedstock, from inexpensive starch. Discovery of the anhydroglycolysis pathway expands the known catalytic repertoire of GREs, clarifies the hitherto unknown physiological functions of the well-studied enzymes FsaA, FsaB, and GldA, and demonstrates how enzyme discovery efforts can cast light on prevalent yet overlooked metabolites in the microbiome.
糖基自由基酶 (GREs) 催化机制多样的自由基介导反应,在厌氧菌代谢中发挥重要作用。模式细菌 MG1655 含有两种未知功能的 GRE,YbiW 和 PflD,它们广泛存在于人类肠道细菌中。在这里,我们报告 YbiW 和 PflD 分别催化 1,5-脱水葡萄糖-6-磷酸 (AG6P) 和 1,5-脱水甘露糖醇-6-磷酸 (AM6P) 的开环 C-O 裂解。两种酶的产物 1-脱氧果糖-6-磷酸 (DF6P) 然后被醛缩酶 FsaA 或 FsaB 裂解,形成甘油醛-3-磷酸 (G3P) 和羟基丙酮 (HA),然后被 NADH 依赖的脱氢酶 GldA 还原形成 1,2-丙二醇 (1,2-PDO)。YbiW 和 PflD 与底物复合物的晶体结构提供了对自由基介导的 C-O 裂解机制的深入了解。这种“脱水糖酵解”途径使能够在 1,5-脱水葡萄糖 (AG) 和 1,5-脱水甘露糖醇 (AM) 上进行厌氧生长,我们探究了利用该途径从廉价淀粉生产高需求手性化学原料 1,2-PDO 的可行性。脱水糖酵解途径的发现扩展了 GREs 的已知催化谱,阐明了研究充分的酶 FsaA、FsaB 和 GldA 迄今未知的生理功能,并展示了酶发现工作如何揭示微生物组中普遍存在但被忽视的代谢物。