Levin Benjamin J, Balskus Emily P
Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States.
Biochemistry. 2018 Jun 12;57(23):3222-3226. doi: 10.1021/acs.biochem.8b00164. Epub 2018 Mar 16.
Propanediol dehydratase (PD), a recently characterized member of the glycyl radical enzyme (GRE) family, uses protein-based radicals to catalyze the chemically challenging dehydration of ( S)-1,2-propanediol. This transformation is also performed by the well-studied enzyme B-dependent propanediol dehydratase (B-PD) using an adenosylcobalamin cofactor. Despite the prominence of PD in anaerobic microorganisms, it remains unclear if the mechanism of this enzyme is similar to that of B-PD. Here we report O labeling experiments that suggest PD and B-PD employ distinct mechanisms. Unlike B-PD, PD appears to catalyze the direct elimination of a hydroxyl group from an initially formed substrate-based radical, avoiding the generation of a 1,1- gem diol intermediate. Our studies provide further insights into how GREs perform elimination chemistry and highlight how nature has evolved diverse strategies for catalyzing challenging reactions.
丙二醇脱水酶(PD)是最近被鉴定出的甘氨酰自由基酶(GRE)家族成员,它利用基于蛋白质的自由基催化具有化学挑战性的(S)-1,2-丙二醇脱水反应。这种转化也可由经过充分研究的依赖于维生素B12的丙二醇脱水酶(B-PD)利用腺苷钴胺素辅因子来完成。尽管PD在厌氧微生物中很突出,但该酶的作用机制是否与B-PD相似仍不清楚。在此,我们报告的氧标记实验表明,PD和B-PD采用不同的机制。与B-PD不同,PD似乎催化直接从最初形成的基于底物的自由基中消除一个羟基,避免生成1,1-偕二醇中间体。我们的研究进一步深入了解了GRE如何进行消除化学反应,并突出了自然界如何进化出多种策略来催化具有挑战性的反应。