Suppr超能文献

结肠镜检查视频的主观与客观质量评估

Subjective and Objective Quality Assessment of Colonoscopy Videos.

作者信息

Yue Guanghui, Zhang Lixin, Du Jingfeng, Zhou Tianwei, Zhou Wei, Lin Weisi

出版信息

IEEE Trans Med Imaging. 2025 Feb;44(2):841-854. doi: 10.1109/TMI.2024.3461737. Epub 2025 Feb 4.

Abstract

Captured colonoscopy videos usually suffer from multiple real-world distortions, such as motion blur, low brightness, abnormal exposure, and object occlusion, which impede visual interpretation. However, existing works mainly investigate the impacts of synthesized distortions, which differ from real-world distortions greatly. This research aims to carry out an in-depth study for colonoscopy Video Quality Assessment (VQA). In this study, we advance this topic by establishing both subjective and objective solutions. Firstly, we collect 1,000 colonoscopy videos with typical visual quality degradation conditions in practice and construct a multi-attribute VQA database. The quality of each video is annotated by subjective experiments from five distortion attributes (i.e., temporal-spatial visibility, brightness, specular reflection, stability, and utility), as well as an overall perspective. Secondly, we propose a Distortion Attribute Reasoning Network (DARNet) for automatic VQA. DARNet includes two streams to extract features related to spatial and temporal distortions, respectively. It adaptively aggregates the attribute-related features through a multi-attribute association module to predict the quality score of each distortion attribute. Motivated by the observation that the rating behaviors for all attributes are different, a behavior guided reasoning module is further used to fuse the attribute-aware features, resulting in the overall quality. Experimental results on the constructed database show that our DARNet correlates well with subjective ratings and is superior to nine state-of-the-art methods.

摘要

采集到的结肠镜检查视频通常会受到多种现实世界中的失真影响,如运动模糊、低亮度、异常曝光和物体遮挡等,这些都会妨碍视觉解读。然而,现有研究主要探讨的是合成失真的影响,而合成失真与现实世界中的失真有很大差异。本研究旨在对结肠镜检查视频质量评估(VQA)进行深入研究。在本研究中,我们通过建立主观和客观的解决方案来推进这一主题。首先,我们收集了1000个在实际中具有典型视觉质量下降情况的结肠镜检查视频,并构建了一个多属性VQA数据库。每个视频的质量通过来自五个失真属性(即时空可见性、亮度、镜面反射、稳定性和实用性)以及一个整体视角的主观实验进行标注。其次,我们提出了一种用于自动VQA的失真属性推理网络(DARNet)。DARNet包括两个流,分别用于提取与空间和时间失真相关的特征。它通过一个多属性关联模块自适应地聚合与属性相关的特征,以预测每个失真属性的质量得分。基于所有属性的评分行为不同这一观察结果,进一步使用一个行为引导推理模块来融合属性感知特征,从而得到整体质量。在构建的数据库上的实验结果表明,我们的DARNet与主观评分具有良好的相关性,并且优于九种先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验