Dong Haodi, Wang Shengsi, Liu Changcheng, Huang Que, Zhang Baofeng, Chen Yanjun
School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
Institute of Advanced Energy Materials and Systems, North University of China, Taiyuan 030051, Shanxi, People's Republic of China.
ACS Appl Mater Interfaces. 2024 Sep 25;16(38):50690-50705. doi: 10.1021/acsami.4c09605. Epub 2024 Sep 16.
Challenges related to poor electronic conductivity and cycling stability have impeded the development and utilization of NaV(PO) (). Therefore, this study focuses on enhancing the performance of by employing a sol-gel method to design various gradients of F/Al-doped and carbon nanotube (CNT)-enwrapped materials. The introduction of F doping replacing PO tetrahedra reduces the occupied space, while F monomers can establish stronger bonds with VO octahedral pillars closer to O atoms. Additionally, Al doping introduces a new AlO octahedral structure at the V site, strengthening the 3D framework. The synergistic substitution of F and Al contributes to improving the stability of the framework, which enhances the Na migration channels and overall electrochemical performance. Furthermore, the coating of CNTs plays a crucial role in creating a favorable interface transition layer that facilitates efficient electron transport and enhances electronic conductivity. Comprehensively, the modified FAl-2 exhibits a high capacity of 115.8 mA h g at 0.1C. It reveals 89.3 mA h g at 60C and maintains 83.8 mA h g after 2000 cycles, indicating a capacity retention rate of 93.84%. Electrochemical ex situ X-ray diffraction (XRD) demonstrates that FAl-2 behaves at relatively low values (0.328%-1.075%) of volume shrinkage during the whole charge/discharge process, indicating its near-zero strain property. The postcycled XRD and X-ray photoelectron spectroscopy further verify the significantly enhanced crystal structural stability of FAl-2. Moreover, FAl-2 possesses a higher thermal runaway temperature, indicating a superior thermal stability. The self-releasing heat trend observed in FAl-2 can offer valuable insights into the design of battery management systems.
与电子导电性差和循环稳定性相关的挑战阻碍了NaV(PO)()的开发和利用。因此,本研究专注于通过采用溶胶 - 凝胶法设计各种梯度的F/Al掺杂和碳纳米管(CNT)包裹的材料来提高其性能。F掺杂取代PO四面体的引入减少了占据空间,而F单体可以与更靠近O原子的VO八面体支柱建立更强的键。此外,Al掺杂在V位点引入了新的AlO八面体结构,加强了三维框架。F和Al的协同取代有助于提高框架的稳定性,这增强了Na迁移通道和整体电化学性能。此外,CNT的包覆在创建有利的界面过渡层方面起着关键作用,该过渡层有助于高效的电子传输并提高电子导电性。综合来看,改性后的FAl - 2在0.1C时表现出115.8 mA h g的高容量。在60C时它显示出89.3 mA h g,并且在2000次循环后保持83.8 mA h g,容量保持率为93.84%。电化学非原位X射线衍射(XRD)表明,FAl - 2在整个充/放电过程中的体积收缩率相对较低(0.328% - 1.075%),表明其近零应变特性。循环后的XRD和X射线光电子能谱进一步验证了FAl - 2晶体结构稳定性的显著增强。此外,FAl - 2具有更高的热失控温度,表明其具有优异的热稳定性。在FAl - 2中观察到的自放热趋势可为电池管理系统的设计提供有价值的见解。