Jang Seonghan, Son Jin-Soo, Schmelz Eric A, Ryu Choong-Min
Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea.
Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
Plant Signal Behav. 2024 Dec 31;19(1):2404808. doi: 10.1080/15592324.2024.2404808. Epub 2024 Sep 16.
and , the causative agents of bacterial wilt, ranks as the second most devastating phytopathogens, affecting over 310 plant species and causing substantial economic losses worldwide. and infect plants through the underground root system, where it interacts with both the host and the surrounding microbiota and multiply in the xylem where bacteria cell and its polysaccharide product block the water transportation from root to aboveground. Currently, effective control methods are limited, as resistance genes are unavailable and antibiotics prove ineffective. In current Commentary, we review recent advancements in combating bacterial wilt, categorizing the approaches (weapons) into three distinct strategies. The physical and chemical weapons focus on leveraging sound waves to trigger crop immunity and reducing bacterial virulence signaling, respectively. The biological weapon employs predatory protists to directly consume cells in the root zone, while also reshaping the protective rhizosphere microbiome to fortify the plant. We believe that these novel methods hold the potential to revolutionize crop protection from bacterial wilt and inspire new era in sustainable agriculture.
青枯菌作为细菌性枯萎病的致病因子,是第二大致命的植物病原体,影响超过310种植物,并在全球范围内造成重大经济损失。青枯菌通过地下根系感染植物,在那里它与宿主和周围的微生物群相互作用,并在木质部中繁殖,细菌细胞及其多糖产物会阻碍水分从根部运输到地上部分。目前,有效的防治方法有限,因为缺乏抗性基因且抗生素被证明无效。在当前的评论中,我们回顾了对抗细菌性枯萎病的最新进展,将这些方法(武器)分为三种不同的策略。物理和化学武器分别侧重于利用声波触发作物免疫力和减少细菌毒力信号。生物武器利用捕食性原生生物直接消耗根区的青枯菌细胞,同时还重塑保护性根际微生物群以强化植物。我们相信,这些新方法有可能彻底改变作物对细菌性枯萎病的保护,并开创可持续农业的新时代。