Suppr超能文献

语言模型辅助的机器学习、光电化学以及水中CHNHPbI薄膜兼容溶剂的第一性原理研究

Language Model-Assisted Machine Learning, Photoelectrochemical, and First-Principles Investigation of Compatible Solvents for a CHNHPbI Film in Water.

作者信息

Huang Yiru, Li Shenyue, Hu Wenguang, Shao Shaofeng, Li Qingfang, Zhang Lei

机构信息

Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China.

出版信息

ACS Appl Mater Interfaces. 2024 Sep 25;16(38):51595-51607. doi: 10.1021/acsami.4c06276. Epub 2024 Sep 16.

Abstract

Machine learning and data-driven methods have attracted a significant amount of attention for the acceleration of the design of molecules and materials. In this study, a material design protocol based on multimode modeling that combines literature modeling, numerical data collection, textual descriptor design, genetic modeling, experimental validation, first-principles calculation, and theoretical efficiency calculation is proposed, with a case study on designing compatible complex solvent molecules for a halide perovskite film, which is notorious for optoelectronic deactivation under hostile conditions, especially in water. In the multimode modeling design process, the textual descriptors play the central role and store rich literature scientific knowledge, which starts from the construction of a high-dimension literature model based on scientific articles and is realized by a genetic algorithm for materials predictions. The prediction is substantiated by follow-up experiments and first-principles calculations, leading to the successful identification of effective molecular combinations delivering an unprecedented large aqueous photocurrent (increasing by 3 orders of magnitude compared with that of CHNHPbI) and remarkable aqueous stability (improving from 36% to 89% after immersion in water) under the hostile condition. This study provides a practical route via multimode modeling for accelerating the design of molecule-modified and solution-processed materials in a real scenario.

摘要

机器学习和数据驱动方法在加速分子和材料设计方面已引起了广泛关注。在本研究中,提出了一种基于多模式建模的材料设计方案,该方案结合了文献建模、数值数据收集、文本描述符设计、遗传建模、实验验证、第一性原理计算和理论效率计算,并以设计用于卤化物钙钛矿薄膜的兼容复合溶剂分子为例进行研究,该薄膜在恶劣条件下,尤其是在水中,因光电失活而声名狼藉。在多模式建模设计过程中,文本描述符起着核心作用,并存储丰富的文献科学知识,其始于基于科学文章构建高维文献模型,并通过用于材料预测的遗传算法实现。该预测通过后续实验和第一性原理计算得到证实,从而成功识别出有效的分子组合,在恶劣条件下实现了前所未有的大的水相光电流(与CHNHPbI相比增加了3个数量级)和显著的水相稳定性(在水中浸泡后从36%提高到89%)。本研究通过多模式建模提供了一条在实际场景中加速分子改性和溶液处理材料设计的实用途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验