Suppr超能文献

利用衰减全反射傅里叶变换红外光谱结合机器学习算法检测棉花叶片上的黄萎病菌感染。

Detection of Verticillium infection in cotton leaves using ATR-FTIR spectroscopy coupled with machine learning algorithms.

机构信息

Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, China.

Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2025 Jan 15;325:125127. doi: 10.1016/j.saa.2024.125127. Epub 2024 Sep 12.

Abstract

Verticillium wilt (VW) is a soil-borne vascular disease that affects upland cotton and is caused by Verticillium dahliae Kleb. A rapid and user-friendly early diagnostic technique is essential for the preventing and controlling VW disease. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) technology was used to detect VW infection in cotton leaves. About 1800 FTIR spectra were obtained from 348 cotton leaves. The cotton leaves were collected from three categories: VW group, infected group and control group (non-infected). The vibrational peak of chitins at 1558 cm was identified through mean and differential analysis of FTIR spectra as a criterion to differentiate the VW or infected group from the control group. Classification models were constructed using various machine learning algorithms. The support vector machines (SVM) model exhibited the highest predictive accuracy (>96 %) in each group and a total accuracy (>97 %) for the three groups. These results provide a new approach for detecting Verticillium infection in cotton leaves and shows a promising potential for the future applications of the method in plant science.

摘要

黄萎病(VW)是一种土传维管束病害,影响旱地棉花,由黄萎轮枝菌(Verticillium dahliae Kleb.)引起。快速且易于使用的早期诊断技术对于防治 VW 病至关重要。本研究采用傅里叶变换红外(FTIR)光谱技术与衰减全反射(ATR)技术检测棉花叶片中的 VW 感染。从 348 片棉花叶片中获得了约 1800 个 FTIR 光谱。棉花叶片取自 VW 组、感染组和对照组(未感染)三组。通过 FTIR 光谱的均值和差分分析,确定了几丁质在 1558cm处的振动峰作为区分 VW 或感染组与对照组的标准。使用各种机器学习算法构建分类模型。支持向量机(SVM)模型在每组中的预测准确率最高(>96%),三组的总准确率(>97%)。这些结果为检测棉花叶片中的黄萎病菌感染提供了一种新方法,并显示出该方法在植物科学未来应用中的广阔前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验