Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
Plant Physiol Biochem. 2024 Nov;216:109127. doi: 10.1016/j.plaphy.2024.109127. Epub 2024 Sep 13.
Rising atmospheric carbon dioxide (CO) and soil heavy metal pollution affect crop safety and production. Exposure to elevated CO (ECO) increases cadmium (Cd) uptake in some crops like wheat and rice, however, it remains unclear how ECO affects Cd uptake by Brassica napus. Here, we investigated the responses of B. napus seedlings exposed to ECO and Cd through analyses of physiology, transcriptome, metabolome, and rhizosphere microbes. Compared with Cd-stress alone (Cd50_ACO), ECO boosted the uptake of Cd by B. napus roots by 38.78% under coupled stresses (Cd50_ECO). The biomass and leaf chlorophyll a content increased by 38.49% and 79.66% respectively in Cd50_ECO relative to Cd50_ACO. Activities of superoxide dismutase (SOD) and peroxidase (POD) enhanced by 8.42% and 185.01%, respectively, while glutathione (GSH) and ascorbic acid (AsA) contents increased by 16.44% and 52.48%, and abundances of rhizosphere microbes changed significantly under coupled stresses (Cd50_ECO) relative to Cd-stress alone (Cd50_ACO). Also, the upregulation of glutathione, glutathione transferase genes, and heavy metal ATPase expression promoted the detoxification effect of rapeseed on Cd. Changes in the expression of transcription factors like MAPK, WRKY, BAK1 and PR1, as well as changes in metabolic pathways like β-alanine, may be involved in the regulatory mechanism of stress response. These findings provide new insights for studying the regulatory mechanism of rapeseed under ECO on soil Cd stress, and also provide a basis for further research on Cd tolerant rapeseed varieties in the future climate context.
大气中二氧化碳(CO)浓度升高和土壤重金属污染会影响作物安全和产量。暴露于高浓度 CO(ECO)会增加小麦和水稻等一些作物对镉(Cd)的吸收,但目前尚不清楚 ECO 如何影响油菜对 Cd 的吸收。在这里,我们通过分析生理学、转录组、代谢组和根际微生物,研究了油菜幼苗在 ECO 和 Cd 胁迫下的响应。与单独 Cd 胁迫(Cd50_ACO)相比,在耦合胁迫(Cd50_ECO)下,ECO 使油菜根系对 Cd 的吸收增加了 38.78%。与 Cd50_ACO 相比,Cd50_ECO 下油菜生物量和叶片叶绿素 a 含量分别增加了 38.49%和 79.66%。超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性分别提高了 8.42%和 185.01%,而谷胱甘肽(GSH)和抗坏血酸(AsA)的含量分别增加了 16.44%和 52.48%,根际微生物的丰度在耦合胁迫(Cd50_ECO)下也发生了显著变化与单独 Cd 胁迫(Cd50_ACO)相比。此外,谷胱甘肽、谷胱甘肽转移酶基因和重金属 ATP 酶的表达上调促进了油菜对 Cd 的解毒作用。MAPK、WRKY、BAK1 和 PR1 等转录因子表达的变化以及 β-丙氨酸、可能参与了油菜在 ECO 下对土壤 Cd 胁迫的应激反应的调节机制。这些发现为研究油菜在 ECO 下对土壤 Cd 胁迫的调节机制提供了新的见解,也为未来气候条件下耐 Cd 油菜品种的进一步研究提供了依据。