Suppr超能文献

基于生物启发算法的中智目标规划技术在农田分配问题中的应用

Neutrosophic goal programming technique with bio inspired algorithms for crop land allocation problem.

作者信息

Angammal S, Grace G Hannah

机构信息

School of Advanced Sciences, Department of Mathematics, Vellore Institute of Technology Chennai, Chennai, 6000127, India.

出版信息

Sci Rep. 2024 Sep 16;14(1):21565. doi: 10.1038/s41598-024-69487-0.

Abstract

In agriculture, crop planning and land distribution have been important research subjects. The distribution of land involves several multi-functional tasks, such as maximizing output and profit and minimizing costs. These functions are influenced by a variety of uncertain elements, including yield, crop price, and indeterminate factors like seed growth and suitable fertilizer. In order to address this problem, other researchers have used fuzzy and intuitionistic fuzzy optimization approaches, which did not include the indeterminacy membership functions. However, the neutrosophic optimization technique addresses the problem by using individual truth, falsity, and indeterminacy membership functions. So, to improve the optimal solution, the Neutrosophic Goal Programming (NGP) problem with hexagonal intuitionistic parameters is employed in this study. The membership functions for truth, indeterminacy, and falsity are constructed using hyperbolic, exponential, and linear membership functions. Minimizing the under deviations of truth, over deviations of indeterminacy, and falsity yields the NGP achievement function, which is used to attain optimal expenditure, production, and profit under the constraints of labour, land, food requirements, and water. Bio-inspired computing has been a major research topic in recent years. Optimization is mostly accomplished through the use of bio-inspired algorithms, which draw inspiration from natural behaviour. Bio-inspired algorithms are highly efficient in exploring large solution spaces, and helps to manage trade-offs between various goals, and providing the global optimal solution. Consequently, bio-inspired algorithms such as Grey Wolf Optimization (GWO), Social Group Optimization (SGO), and Particle Swarm Optimization (PSO) are employed in the current work to determine the global optimal solutions for the NGP achievement function. The data for the study was collected from the medium-sized farmers in Ariyalur District, Tamil Nadu, India. To illustrate the uniqueness and application of the developed method, the optimal solutions of the suggested method are compared with Zimmermann, Angelov, and Torabi techniques. The proposed technique demonstrates that the bioinspired algorithms' optimal solution to the neutrosophic goal is superior to the existing approaches.

摘要

在农业中,作物规划和土地分配一直是重要的研究课题。土地分配涉及多项多功能任务,如实现产量和利润最大化以及成本最小化。这些功能受到多种不确定因素的影响,包括产量、作物价格以及诸如种子生长和合适肥料等不确定因素。为了解决这个问题,其他研究人员使用了模糊和直觉模糊优化方法,但这些方法没有考虑不确定性隶属函数。然而,中立优化技术通过使用个体真值、假值和不确定性隶属函数来解决该问题。因此,为了改进最优解,本研究采用了具有六边形直觉参数的中立目标规划(NGP)问题。真值、不确定性和假值的隶属函数分别使用双曲线、指数和线性隶属函数来构建。最小化真值的下偏差、不确定性的上偏差和假值可得到NGP成就函数,该函数用于在劳动力、土地、粮食需求和水资源的约束下实现最优支出、产量和利润。近年来,生物启发式计算一直是一个主要的研究课题。优化大多通过使用从自然行为中汲取灵感的生物启发式算法来实现。生物启发式算法在探索大型解空间方面效率很高,有助于在各种目标之间进行权衡,并提供全局最优解。因此,本研究采用了诸如灰狼优化算法(GWO)、社会群体优化算法(SGO)和粒子群优化算法(PSO)等生物启发式算法来确定NGP成就函数的全局最优解。本研究的数据来自印度泰米尔纳德邦阿里亚卢尔区的中型农户。为了说明所开发方法的独特性和应用,将所提方法的最优解与齐默尔曼、安杰洛夫和托拉比技术进行了比较。所提技术表明,生物启发式算法对中立目标的最优解优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afd5/11405532/3e435c7d1789/41598_2024_69487_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验