Suppr超能文献

基于超声融合、注意力机制和选择性变换的脓毒性关节炎建模:一项初步研究。

Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study.

作者信息

Lo Chung-Ming, Lai Kuo-Lung

机构信息

Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan.

Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taiwan Boulevard Section 4Xitun Dist., 1650, Taichung City 407, Taiwan.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):1028-1039. doi: 10.1007/s10278-024-01259-8. Epub 2024 Sep 16.

Abstract

Conventionally diagnosing septic arthritis relies on detecting the causal pathogens in samples of synovial fluid, synovium, or blood. However, isolating these pathogens through cultures takes several days, thus delaying both diagnosis and treatment. Establishing a quantitative classification model from ultrasound images for rapid septic arthritis diagnosis is mandatory. For the study, a database composed of 342 images of non-septic arthritis and 168 images of septic arthritis produced by grayscale (GS) and power Doppler (PD) ultrasound was constructed. In the proposed architecture of fusion with attention and selective transformation (FAST), both groups of images were combined in a vision transformer (ViT) with the convolutional block attention module, which incorporates spatial, modality, and channel features. Fivefold cross-validation was applied to evaluate the generalized ability. The FAST architecture achieved the accuracy, sensitivity, specificity, and area under the curve (AUC) of 86.33%, 80.66%, 90.25%, and 0.92, respectively. These performances were higher than using conventional ViT (82.14%) and significantly better than using one modality alone (GS 73.88%, PD 72.02%), with the p-value being less than 0.01. Through the integration of multi-modality and the extraction of multiple channel features, the established model provided promising accuracy and AUC in septic arthritis classification. The end-to-end learning of ultrasound features can provide both rapid and objective assessment suggestions for future clinic use.

摘要

传统上,诊断化脓性关节炎依赖于在滑液、滑膜或血液样本中检测致病病原体。然而,通过培养分离这些病原体需要数天时间,从而延误诊断和治疗。建立一个基于超声图像的定量分类模型以快速诊断化脓性关节炎势在必行。在这项研究中,构建了一个由342张非化脓性关节炎图像和168张由灰度(GS)和功率多普勒(PD)超声产生的化脓性关节炎图像组成的数据库。在所提出的带有注意力和选择性变换的融合架构(FAST)中,两组图像在一个带有卷积块注意力模块的视觉变换器(ViT)中进行合并,该模块整合了空间、模态和通道特征。采用五折交叉验证来评估泛化能力。FAST架构分别实现了86.33%、80.66%、90.25%的准确率、灵敏度、特异性以及0.92的曲线下面积(AUC)。这些性能高于使用传统ViT(82.14%),并且显著优于单独使用一种模态(GS为73.88%,PD为72.02%),p值小于0.01。通过多模态的整合和多通道特征的提取,所建立的模型在化脓性关节炎分类中提供了有前景的准确率和AUC。超声特征的端到端学习可以为未来临床应用提供快速且客观的评估建议。

相似文献

1
Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study.
J Imaging Inform Med. 2025 Apr;38(2):1028-1039. doi: 10.1007/s10278-024-01259-8. Epub 2024 Sep 16.
2
Deep learning-based assessment of knee septic arthritis using transformer features in sonographic modalities.
Comput Methods Programs Biomed. 2023 Jul;237:107575. doi: 10.1016/j.cmpb.2023.107575. Epub 2023 May 3.
3
Interactively Fusing Global and Local Features for Benign and Malignant Classification of Breast Ultrasound Images.
Ultrasound Med Biol. 2025 Mar;51(3):525-534. doi: 10.1016/j.ultrasmedbio.2024.11.014. Epub 2024 Dec 20.
4
A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.
Med Phys. 2022 Sep;49(9):5787-5798. doi: 10.1002/mp.15852. Epub 2022 Jul 30.
5
Towards robust multimodal ultrasound classification for liver tumor diagnosis: A generative approach to modality missingness.
Comput Methods Programs Biomed. 2025 Jun;265:108759. doi: 10.1016/j.cmpb.2025.108759. Epub 2025 Mar 30.
6
Cross-Attention Based Multi-Resolution Feature Fusion Model for Self-Supervised Cervical OCT Image Classification.
IEEE/ACM Trans Comput Biol Bioinform. 2023 Jul-Aug;20(4):2541-2554. doi: 10.1109/TCBB.2023.3246979. Epub 2023 Aug 9.
7
Diagnostic potential of inflammatory markers in septic arthritis and periprosthetic joint infections: a clinical study with 719 patients.
Infect Dis (Lond). 2015 Jun;47(6):399-409. doi: 10.3109/00365548.2015.1006674. Epub 2015 Mar 6.
8
Serum procalcitonin as a diagnostic aid in patients with acute bacterial septic arthritis.
Int J Rheum Dis. 2015 Mar;18(3):352-9. doi: 10.1111/1756-185X.12496. Epub 2014 Dec 3.
9
Utility of Synovial Fluid Biomarkers for Culture-Positive Septic Arthritis in a Lyme Disease-Endemic Region.
Pediatr Emerg Care. 2024 Jul 1;40(7):e82-e88. doi: 10.1097/PEC.0000000000003188. Epub 2024 Apr 2.
10
Ruling out septic arthritis risk in a few minutes using mid-infrared spectroscopy in synovial fluids.
Rheumatology (Oxford). 2021 Mar 2;60(3):1158-1165. doi: 10.1093/rheumatology/keaa373.

引用本文的文献

本文引用的文献

1
2
Predictive stroke risk model with vision transformer-based Doppler features.
Med Phys. 2024 Jan;51(1):126-138. doi: 10.1002/mp.16861. Epub 2023 Dec 3.
3
Development and Clinical Application of Artificial Intelligence Assistant System for Rotator Cuff Ultrasound Scanning.
Ultrasound Med Biol. 2024 Feb;50(2):251-257. doi: 10.1016/j.ultrasmedbio.2023.10.010. Epub 2023 Dec 1.
4
Multi-modal cross-attention network for Alzheimer's disease diagnosis with multi-modality data.
Comput Biol Med. 2023 Aug;162:107050. doi: 10.1016/j.compbiomed.2023.107050. Epub 2023 May 22.
5
Modeling the survival of colorectal cancer patients based on colonoscopic features in a feature ensemble vision transformer.
Comput Med Imaging Graph. 2023 Jul;107:102242. doi: 10.1016/j.compmedimag.2023.102242. Epub 2023 May 9.
6
Deep learning-based assessment of knee septic arthritis using transformer features in sonographic modalities.
Comput Methods Programs Biomed. 2023 Jul;237:107575. doi: 10.1016/j.cmpb.2023.107575. Epub 2023 May 3.
7
Multi-modal fusion of deep transfer learning based COVID-19 diagnosis and classification using chest x-ray images.
Multimed Tools Appl. 2023;82(8):12653-12677. doi: 10.1007/s11042-022-13739-6. Epub 2022 Sep 16.
8
Computer-aided diagnosis of ischemic stroke using multi-dimensional image features in carotid color Doppler.
Comput Biol Med. 2022 Aug;147:105779. doi: 10.1016/j.compbiomed.2022.105779. Epub 2022 Jun 22.
9
Musculoskeletal ultrasound for treating rheumatoid arthritis to target-a systematic literature review.
Rheumatology (Oxford). 2022 Nov 28;61(12):4590-4602. doi: 10.1093/rheumatology/keac261.
10
Assessing Ischemic Stroke with Convolutional Image Features in Carotid Color Doppler.
Ultrasound Med Biol. 2021 Aug;47(8):2266-2276. doi: 10.1016/j.ultrasmedbio.2021.03.038. Epub 2021 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验