文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 VGG 注意力机制的视觉Transformer 网络在乳腺超声图像良恶性分类中的应用。

A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.

机构信息

School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing, China.

School of computer Science and Engineering, Beihang University, Beijing, China.

出版信息

Med Phys. 2022 Sep;49(9):5787-5798. doi: 10.1002/mp.15852. Epub 2022 Jul 30.


DOI:10.1002/mp.15852
PMID:35866492
Abstract

PURPOSE: Breast cancer is the most commonly occurring cancer worldwide. The ultrasound reflectivity imaging technique can be used to obtain breast ultrasound (BUS) images, which can be used to classify benign and malignant tumors. However, the classification is subjective and dependent on the experience and skill of operators and doctors. The automatic classification method can assist doctors and improve the objectivity, but current convolution neural network (CNN) is not good at learning global features and vision transformer (ViT) is not good at extraction local features. In this study, we proposed a visual geometry group attention ViT (VGGA-ViT) network to overcome their disadvantages. METHODS: In the proposed method, we used a CNN module to extract the local features and employed a ViT module to learn the global relationship among different regions and enhance the relevant local features. The CNN module was named the VGGA module. It was composed of a VGG backbone, a feature extraction fully connected layer, and a squeeze-and-excitation block. Both the VGG backbone and the ViT module were pretrained on the ImageNet dataset and retrained using BUS samples in this study. Two BUS datasets were employed for validation. RESULTS: Cross-validation was conducted on two BUS datasets. For the Dataset A, the proposed VGGA-ViT network achieved high accuracy (88.71 1.55%), recall (90.73 1.57%), specificity (85.58 3.35%), precision (90.77 1.98%), F1 score (90.73 1.24%), and Matthews correlation coefficient (MCC) (76.34 3.29%), which were better than those of all compared previous networks in this study. The Dataset B was used as a separate test set, the test results showed that the VGGA-ViT had highest accuracy (81.72 2.99%), recall (64.45 2.96%), specificity (90.28 3.51%), precision (77.08 7.21%), F1 score (70.11 4.25%), and MCC (57.64 6.88%). CONCLUSIONS: In this study, we proposed the VGGA-ViT for the BUS classification, which was good at learning both local and global features. The proposed network achieved higher accuracy than the compared previous methods.

摘要

目的:乳腺癌是全球最常见的癌症。超声反射成像技术可用于获取乳腺超声(BUS)图像,用于对良性和恶性肿瘤进行分类。然而,分类具有主观性,且依赖于操作人员和医生的经验和技能。自动分类方法可以协助医生并提高客观性,但当前的卷积神经网络(CNN)不擅长学习全局特征,而视觉变换器(ViT)不擅长提取局部特征。在本研究中,我们提出了一种视觉几何群注意力 ViT(VGGA-ViT)网络来克服它们的缺点。

方法:在提出的方法中,我们使用 CNN 模块提取局部特征,并使用 ViT 模块学习不同区域之间的全局关系并增强相关的局部特征。CNN 模块命名为 VGGA 模块。它由 VGG 骨干网、特征提取全连接层和挤压激励块组成。VGG 骨干网和 ViT 模块均在 ImageNet 数据集上进行预训练,并在本研究中使用 BUS 样本进行再训练。使用了两个 BUS 数据集进行验证。

结果:在两个 BUS 数据集上进行了交叉验证。对于数据集 A,所提出的 VGGA-ViT 网络实现了较高的准确率(88.71 1.55%)、召回率(90.73 1.57%)、特异性(85.58 3.35%)、精度(90.77 1.98%)、F1 分数(90.73 1.24%)和马修斯相关系数(MCC)(76.34 3.29%),优于本研究中所有比较的先前网络。数据集 B 被用作单独的测试集,测试结果表明 VGGA-ViT 具有最高的准确率(81.72 2.99%)、召回率(64.45 2.96%)、特异性(90.28 3.51%)、精度(77.08 7.21%)、F1 分数(70.11 4.25%)和 MCC(57.64 6.88%)。

结论:在本研究中,我们提出了用于 BUS 分类的 VGGA-ViT,它擅长学习局部和全局特征。所提出的网络比比较的先前方法具有更高的准确性。

相似文献

[1]
A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.

Med Phys. 2022-9

[2]
Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images.

Biomed Eng Online. 2021-11-18

[3]
An attention-supervised full-resolution residual network for the segmentation of breast ultrasound images.

Med Phys. 2020-11

[4]
Squeeze-and-excitation-attention-based mobile vision transformer for grading recognition of bladder prolapse in pelvic MRI images.

Med Phys. 2024-8

[5]
Deep learning-based immunohistochemical estimation of breast cancer via ultrasound image applications.

Front Oncol. 2024-1-9

[6]
A deep supervised transformer U-shaped full-resolution residual network for the segmentation of breast ultrasound image.

Med Phys. 2023-12

[7]
Distilling Knowledge From an Ensemble of Vision Transformers for Improved Classification of Breast Ultrasound.

Acad Radiol. 2024-1

[8]
Classification of multi-feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks.

Med Phys. 2024-6

[9]
BUS-Set: A benchmark for quantitative evaluation of breast ultrasound segmentation networks with public datasets.

Med Phys. 2023-5

[10]
Spatial and geometric learning for classification of breast tumors from multi-center ultrasound images: a hybrid learning approach.

BMC Med Imaging. 2024-6-5

引用本文的文献

[1]
TMAN: A Triple Morphological Feature Attention Network for Fine-Grained Classification of Breast Ultrasound Images.

J Imaging Inform Med. 2025-4-8

[2]
NMTNet: A Multi-task Deep Learning Network for Joint Segmentation and Classification of Breast Tumors.

J Imaging Inform Med. 2025-2-19

[3]
Classifying the molecular subtype of breast cancer using vision transformer and convolutional neural network features.

Breast Cancer Res Treat. 2025-4

[4]
Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network.

Med Image Comput Comput Assist Interv. 2023-10

[5]
Auditory Brainstem Response Data Preprocessing Method for the Automatic Classification of Hearing Loss Patients.

Diagnostics (Basel). 2023-11-27

[6]
Rapid Segmentation and Diagnosis of Breast Tumor Ultrasound Images at the Sonographer Level Using Deep Learning.

Bioengineering (Basel). 2023-10-19

[7]
ETECADx: Ensemble Self-Attention Transformer Encoder for Breast Cancer Diagnosis Using Full-Field Digital X-ray Breast Images.

Diagnostics (Basel). 2022-12-28

[8]
A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms.

Biomedicines. 2022-11-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索