Suppr超能文献

基于完整叶绿体基因组序列的鸡骨常山属植物分子标记的综合比较分析与开发。

Comprehensive comparative analysis and development of molecular markers for Lasianthus species based on complete chloroplast genome sequences.

机构信息

Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China.

College of Pharmacy, Dali University, Dali, 671000, China.

出版信息

BMC Plant Biol. 2024 Dec 31;24(1):867. doi: 10.1186/s12870-024-05383-z.

Abstract

BACKGROUND

Lasianthus species are widely used in traditional Chinese folk medicine with high medicinal value. However, source materials and herbarium specimens are often misidentified due to morphological characteristics and commonly used DNA barcode fragments are not sufficient for accurately identifying Lasianthus species. To improve the molecular methods for distinguishing among Lasianthus species, we report the complete chloroplast (CP) genomes of Lasianthus attenuatus, Lasianthus henryi, Lasianthus hookeri, Lasianthus sikkimensis, obtained via high-throughput Illumina sequencing.

RESULTS

These showed CP genomes size of 160164-160246 bp and a typical quadripartite structure, including a large single-copy region (86675-86848 bp), a small single-copy region (17177-17326 bp), and a pair of inverted repeats (28089-28135 bp). As a whole, the gene order, GC content and IR/SC boundary structure were remarkably similar among of the four Lasianthus CP genomes, the partial gene length and IR, LSC and SSC regions length are still different. The average GC content of the CP genomes was 36.71-36.75%, and a total of 129 genes were detected, including 83 different protein-coding genes, 8 different rRNA genes and 38 different tRNA genes. Furthermore, we compared our 4 complete CP genomes data with publicly available CP genome data from six other Lasianthus species, and we initially screened eleven highly variable region fragments were initially screened. We then evaluated the identification efficiency of eleven highly variable region fragments and 5 regular barcode fragments. Ultimately, we found that the optimal combination fragment' ITS2 + psaI-ycf4' could authenticated the Lasianthus species well. Additionally, the results of genome comparison of Rubiaceae species showed that the coding region is more conservative than the non-coding region, and the ycf1 gene shows the most significant variation. Finally, 49 species of CP genome sequences belonging to 16 genera of the Rubiaceae family were used to construct phylogenetic trees.

CONCLUSIONS

Our research is the first to analyze the chloroplast genomes of four species of Lasianthus in detail and we ultimately determined that the combination fragment' ITS2 + psaI-ycf4' is the optimal barcode combination for identifying the genus of Lasianthus. Meanwhile, we gathered the available CP genome sequences from the Rubiaceae and used them to construct the most comprehensive phylogenetic tree for the Rubiaceae family. These investigations provide an important reference point for further studies in the species identification, genetic diversity, and phylogenetic analyses of Rubiaceae species.

摘要

背景

鸡骨常山属植物在传统中药中应用广泛,具有较高的药用价值。然而,由于形态特征相似,源材料和标本常被误认,且常用的 DNA 条码片段不足以准确鉴定鸡骨常山属植物。为提高鉴别鸡骨常山属植物的分子方法,我们报告了通过高通量 Illumina 测序获得的鸡骨常山、细梗鸡骨常山、钩状鸡骨常山、锡金鸡骨常山的完整叶绿体(CP)基因组。

结果

这些 CP 基因组大小为 160164-160246bp,具有典型的四分体结构,包括一个大的单拷贝区(86675-86848bp)、一个小的单拷贝区(17177-17326bp)和一对反向重复区(28089-28135bp)。总的来说,这四个鸡骨常山 CP 基因组的基因顺序、GC 含量和 IR/SC 边界结构非常相似,部分基因长度、IR、LSC 和 SSC 区长度仍存在差异。CP 基因组的平均 GC 含量为 36.71-36.75%,共检测到 129 个基因,包括 83 个不同的蛋白质编码基因、8 个不同的 rRNA 基因和 38 个不同的 tRNA 基因。此外,我们将这 4 个完整的 CP 基因组数据与其他 6 个鸡骨常山属物种的公共 CP 基因组数据进行了比较,初步筛选出 11 个高度可变区片段。然后我们评估了 11 个高度可变区片段和 5 个常规条码片段的识别效率。最终发现,最佳组合片段“ITS2+psaI-ycf4”可很好地鉴定鸡骨常山属物种。此外,对茜草科物种基因组比较的结果表明,编码区比非编码区更保守,ycf1 基因变异最大。最后,使用 49 个茜草科 16 个属的 CP 基因组序列构建了系统发育树。

结论

本研究首次对 4 种鸡骨常山属植物的叶绿体基因组进行了详细分析,最终确定“ITS2+psaI-ycf4”组合片段是鉴定鸡骨常山属植物的最佳条码组合。同时,我们收集了茜草科的可用 CP 基因组序列,并用于构建最全面的茜草科系统发育树。这些研究为进一步研究茜草科物种的物种鉴定、遗传多样性和系统发育分析提供了重要参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bbf/11406864/00759f2e18f0/12870_2024_5383_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验