Department of Epidemiology and Biostatistics, KAHER, Belagavi, 590010, India.
Technology Innovation Hub (TIH), Indian Institute of Technology-Patna, Bihta, Patna, 801106, India.
BMC Public Health. 2024 Sep 16;24(1):2514. doi: 10.1186/s12889-024-19984-8.
BACKGROUND: This paper focuses on the period from 2019 to 2021 and investigates the factors associated with the high prevalence of C-section deliveries in South India. We also examine the nuanced patterns, socio-demographic associations, and spatial dynamics underlying C-section choices in this region. A cross-sectional study was conducted using large nationally representative survey data. METHODS: National Family Health Survey data (NFHS) from 2019 to 2021 have been used for the analysis. Bayesian Multilevel and Geospatial Analysis have been used as statistical methods. RESULTS: Our analysis reveals significant regional disparities in C-section utilization, indicating potential gaps in healthcare access and socio-economic influences. Maternal age at childbirth, educational attainment, healthcare facility type size of child at birth and ever pregnancy termination are identified as key determinants of method of C-section decisions. Wealth index and urban residence also play pivotal roles, reflecting financial considerations and access to healthcare resources. Bayesian multilevel analysis highlights the need for tailored interventions that consider individual household, primary sampling unit (PSU) and district-level factors. Additionally, spatial analysis identifies regions with varying C-section rates, allowing policymakers to develop targeted strategies to optimize maternal and neonatal health outcomes and address healthcare disparities. Spatial autocorrelation and hotspot analysis further elucidate localized influences and clustering patterns. CONCLUSION: In conclusion, this research underscores the complexity of C-section choices and calls for evidence-based policies and interventions that promote equitable access to quality maternal care in South India. Stakeholders must recognize the multifaceted nature of healthcare decisions and work collaboratively to ensure more balanced and effective healthcare practices in the region.
背景:本文聚焦于 2019 年至 2021 年期间,调查了与印度南部剖宫产率居高不下相关的因素。我们还研究了该地区剖宫产选择背后的细微模式、社会人口关联和空间动态。采用了基于大型全国代表性调查数据的横断面研究。
方法:分析使用了 2019 年至 2021 年的全国家庭健康调查(NFHS)数据。采用贝叶斯多层和地理空间分析作为统计方法。
结果:我们的分析揭示了剖宫产利用方面存在显著的区域差异,表明在医疗保健获取和社会经济影响方面存在潜在差距。分娩时的产妇年龄、教育程度、医疗机构类型、孩子出生时的大小和以往妊娠终止情况被确定为剖宫产决策方法的关键决定因素。财富指数和城市居住也起着关键作用,反映了财务考虑和获得医疗保健资源的机会。贝叶斯多层分析强调需要采取考虑个体家庭、初级抽样单位(PSU)和地区层面因素的针对性干预措施。此外,空间分析确定了剖宫产率不同的区域,使政策制定者能够制定有针对性的策略,优化母婴健康结果,并解决医疗保健差距。空间自相关和热点分析进一步阐明了局部影响和聚类模式。
结论:总之,这项研究强调了剖宫产选择的复杂性,并呼吁制定基于证据的政策和干预措施,以促进印度南部获得公平的优质产妇护理。利益相关者必须认识到医疗保健决策的多面性,并共同努力,确保该地区更平衡和有效的医疗保健实践。
BMC Pregnancy Childbirth. 2024-12-30
Lancet Reg Health Southeast Asia. 2025-8-8
BMC Pregnancy Childbirth. 2023-8-30
BMJ Glob Health. 2021-6
Sci Rep. 2017-9-13