Roys Krupa Elsa, Manju S L, Siddiq Mohamed, Sambandam Anandan
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore Tamil Nadu 632014 India
Nanomaterials and Solar Energy Conversion Laboratory, Department of Chemistry, National Institute of Technology Trichy 620015 India
RSC Adv. 2024 Sep 16;14(40):29229-29241. doi: 10.1039/d4ra05341a. eCollection 2024 Sep 12.
In this article, we report two indole-based metal-free organic dyes In-T-2C (3-(5-(3-((2-carboxy-2-cyanovinyl)-1-pentyl-1-indol-5-yl)thiophen-2-yl)-2-isocyanoacrylic acid) and In-B-C (2-cyano-3-(5-(4-cyanophenyl)-1-pentyl-1-indol-3-yl)acrylic acid) with A-π-D-A architecture. The molecular structures of metal-free indole-based A-π-D-A organic dyes were elucidated using FT-IR, NMR, HRMS and single-crystal X-ray diffraction techniques. The present investigation examined the features of the synthesized dyes employing photophysical attributes, electrochemical traits and theoretical studies were executed to acquire a detailed comprehension of the geometry, electronic structure and absorption spectra of the synthesized dyes using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Additionally, dye-sensitized solar cells (DSSCs) were fabricated using newly synthesized dyes and examined their photovoltaic activity. Electrochemical impedance analysis (EIS) was performed to recognize the interfacial charge transfer in the DSSCs. The In-T-2C dye-based DSSC device exhibited an uppermost fill factor (FF) of 0.63, resulting in the uppermost open-circuit voltage ( ) of 540.2 mV and highest efficiency () of 4.12% due to the highest short-circuit current density ( ) of 12.1 mA cm compared to the In-B-C dye ( = 497 mV, = 1.07, FF = 0.70, = 0.38%).
在本文中,我们报道了两种具有A-π-D-A结构的基于吲哚的无金属有机染料In-T-2C(3-(5-(3-((2-羧基-2-氰基乙烯基)-1-戊基-1-吲哚-5-基)噻吩-2-基)-2-异氰基丙烯酸)和In-B-C(2-氰基-3-(5-(4-氰基苯基)-1-戊基-1-吲哚-3-基)丙烯酸)。使用傅里叶变换红外光谱(FT-IR)、核磁共振(NMR)、高分辨率质谱(HRMS)和单晶X射线衍射技术阐明了基于吲哚的无金属A-π-D-A有机染料的分子结构。本研究利用光物理性质研究了合成染料的特性,进行了电化学特性研究,并运用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)进行理论研究,以详细了解合成染料的几何结构、电子结构和吸收光谱。此外,使用新合成的染料制备了染料敏化太阳能电池(DSSC),并研究了它们的光伏活性。进行电化学阻抗分析(EIS)以识别DSSC中的界面电荷转移。基于In-T-2C染料的DSSC器件表现出最高填充因子(FF)为0.63,开路电压( )最高为540.2 mV,效率( )最高为4.12%,这是因为与In-B-C染料相比,其短路电流密度( )最高,为12.1 mA cm (In-B-C染料的 = 497 mV, = 1.07,FF = 0.70, = 0.38%)。