Zheng Zhiyuan, Zhang Yang, Xing Jinyu, Li Xin, Zhu Zhiqiang, Ye Min, Shen Shuwei, Xu Ronald X
Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China.
Department of Rehabilitation Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
Mater Today Bio. 2024 Aug 30;28:101207. doi: 10.1016/j.mtbio.2024.101207. eCollection 2024 Oct.
Spatial deposition and patterning of microparticles are crucial in chemistry, medicine, and biology. Existing technologies like electric force manipulation, despite precise trajectory control, struggle with complex and personalized patterns. Key challenges include adjusting the quantity of particles deposited in different areas and accurately depositing particles in non-continuous patterns. Here, we present a rational process termed combinatory electric-field-guided deposition (CED) for achieving spatially regulated microparticle deposition on insulative substrates. This process involves coating the substrates with insulating materials like PVP and positioning it on a relief-patterned negative electrode. The negative electric field generated by the electrode attracts microparticles, while the positive surface charges on the substrates repel microparticles, resulting in the formation of a potential well over the electrode area. Consequently, this configuration enables precise control over microparticle deposition without the need for direct contact with the substrate's surface, simplifying the process of switching masks to meet varying microparticle deposition requirements. Furthermore, we demonstrate the customization of patterned microparticles on superhydrophobic coatings to regulate cell distribution, as well as the successful loading of drug-laden microparticles onto antibacterial bandages to match the areas of skin lesions. These applications underscore the versatility of CED across chemical, medical, and bioengineering domains.
微粒的空间沉积和图案化在化学、医学和生物学中至关重要。现有的技术,如电场操纵,尽管能精确控制轨迹,但在形成复杂和个性化图案方面存在困难。关键挑战包括调整不同区域沉积的微粒数量以及以非连续图案精确沉积微粒。在此,我们提出一种合理的过程,称为组合电场引导沉积(CED),用于在绝缘基板上实现空间调控的微粒沉积。该过程包括用诸如聚乙烯吡咯烷酮(PVP)等绝缘材料涂覆基板,并将其放置在带有浮雕图案的负极上。电极产生的负电场吸引微粒,而基板上的正表面电荷排斥微粒,从而在电极区域上方形成一个势阱。因此,这种配置能够精确控制微粒沉积,而无需直接接触基板表面,简化了切换掩膜以满足不同微粒沉积要求的过程。此外,我们展示了在超疏水涂层上定制图案化微粒以调节细胞分布,以及成功地将载药微粒加载到抗菌绷带上以匹配皮肤损伤区域。这些应用强调了CED在化学、医学和生物工程领域的多功能性。