Nanda Spandan, Mishra Abinash, Priyadarsini Amrita, Barpanda Tanya, Baral Amiya Kumar, Jena Supriya, Jena Pradip Kumar, Mallick Bipranarayan, Dash Manasi, Swain Nandita, Jena Nitish Kumar, Mohanty Mahendra Kumar
Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
Model Degree College, Rayagada, Odisha, India.
Heliyon. 2024 Aug 28;10(17):e36946. doi: 10.1016/j.heliyon.2024.e36946. eCollection 2024 Sep 15.
Various thermochemical and biochemical processes are resorted to transform agri-wastes into diverse green fuels. Current investigation encompassed three different types of biomass gingelly, kodo millet and horse grams, whose desirability as biofuel feedstock have been largely unexplored till date. The existence of significant amount of cellulose (38.07 %), volatiles (75.19 %), calorific value (avg. 16.98 MJ/kg) in the gingelly biomass, demonstrates the effectiveness of the concerned biomass for utilization as feedstock in diverse industrial applications. The mean estimates of Eα were lower for kodo millet (approx. 150 kJ/mole), followed by gingelly (approx. 178 kJ/mole) and horse gram (approx. 180 kJ/mole). The mean estimates of ΔHα were 174.81 (FWO), 170.22 (KAS), 169.17 (S) and 170.40 (T) kJ/mol for the gingelly biomass. The mean estimates of ΔHα were 147.83 (FWO), 148.81 (KAS), 147.93 (S) and 149.04 (T) kJ/mol for kodo millet biomass, while for horse gram biomass, mean estimates of ΔHα were 178.91 (FWO), 169.61 (KAS), 168.56 (S) and 168.81 (T) kJ/mol. The minor difference of 3-4 kJ/mole between Aα and Hα, signifies the viability of the thermal disintegration process. From master plot, it's evident that the experimental curve intersects multiple theoretical curves, highlighting the intricate characteristics of the thermal disintegration process. The overall ethanol recovery was highest in gingelly as compared to both the biomasses. Gingelly biomass yielded an ethanol titer of 24.8 g/L after 24 h, resulting in a volumetric ethanol productivity of 1.03 g/L/h and an ethanol yield of 0.36 g/g.
人们采用各种热化学和生物化学过程将农业废弃物转化为多种绿色燃料。当前的研究涵盖了三种不同类型的生物质——芝麻、龙爪稷和绿豆,迄今为止,它们作为生物燃料原料的潜力在很大程度上尚未得到探索。芝麻生物质中存在大量的纤维素(38.07%)、挥发物(75.19%)、热值(平均16.98兆焦/千克),这表明该生物质作为原料在各种工业应用中的有效性。龙爪稷的Eα平均估计值较低(约150千焦/摩尔),其次是芝麻(约178千焦/摩尔)和绿豆(约180千焦/摩尔)。芝麻生物质的ΔHα平均估计值分别为174.81(FWO)、170.22(KAS)、169.17(S)和170.40(T)千焦/摩尔。龙爪稷生物质的ΔHα平均估计值分别为147.83(FWO)、148.81(KAS)、147.93(S)和149.04(T)千焦/摩尔,而绿豆生物质的ΔHα平均估计值分别为178.91(FWO)、169.61(KAS)、168.56(S)和168.81(T)千焦/摩尔。Aα和Hα之间3 - 4千焦/摩尔的微小差异表明热解过程的可行性。从主图可以明显看出,实验曲线与多条理论曲线相交,突出了热解过程的复杂特性。与其他两种生物质相比,芝麻的总乙醇回收率最高。芝麻生物质在24小时后乙醇浓度为24.8克/升,体积乙醇生产率为1.03克/升/小时,乙醇产率为0.36克/克。